基于钛酸盐的陶瓷由于其低成本以及高热和化学稳定性而有希望的N型热电学。在这里,用电化学生产的氧化石墨烯(EGO)和市售的碳黑色(CB)的碳添加碳添加了SRTI 0.85 Nb 0.15 O 3。陶瓷样品在还原的气氛下在1700 K处烧结。XRD,HR-TEM和Raman Spectra证实基质相为立方perov-Skite。没有碳残留。通过掺入氧化石墨烯,由于载流子迁移率增强,电导率在300 K时在300 K下增加了9倍至2818 s cm-1。相比之下,碳黑色样品表现出低密度和较小的平均晶粒尺寸约为1μm。高分辨率的X射线光电子光谱显示出碳黑色样品中存在大量电离杂质,从而显着增强了散射效应。在873 K处实现了1.7 W m -1 K -1的低热电导率。该工作表明,自我促进了SRTIO 3中的电荷运输,而CB则显着抑制了声子的传输。这两种影响与其他热电学的发展有关。
伦敦,HA7 4LP,英国 摘要 采用多丝电弧增材制造 (MWAAM) 成功制备了 TC4/NiTi 多材料结构件。本文展示了仿生梯度夹层构建策略下 TC4/NiTi 多材料结构件的界面特征和力学性能。结果表明,获得了极限抗压强度为 (1533.33±26 MPa) 的 MWAAM TC4/NiTi 梯度异质合金。优异的压缩行为主要归因于梯度区的良好过渡,EBSD 分析表明梯度区的晶粒尺寸细小,差异施密特因子值较小。随着 NiTi 含量的增加,从 TC4 区到 NiTi 区的相组成依次演变为:α-Ti + β-Ti → α-Ti + NiTi 2 → NiTi 2 → NiTi 2 + NiTi → NiTi + Ni 3 Ti。梯度异质合金的显微硬度范围为310±8~230±11 HV,其中区域B处硬度最高,为669.6±12 HV,这是由于NiTi 2 强化相的析出所致;试样的极限断裂应力为1533.33±26 MPa,应变为28.3±6%;在10次加载/卸载循环压缩试验过程中,MWAAM TC4/NiTi梯度异质合金的不可回复应变逐渐趋近于2.75%。
摘要:在所有金属增材制造 (AM) 技术中,定向能量沉积 (DED) 技术,尤其是基于丝材的技术,由于生产速度快而备受关注。此外,它们被认为是能够生产全功能结构部件、具有复杂几何形状和几乎无限尺寸的近净成形产品的最快技术。根据热源的不同,有几种基于丝材的系统,例如等离子弧焊和激光熔化沉积。主要缺点是缺乏市售的丝材;例如,缺乏高强度铝合金丝材。因此,本综述涵盖了传统的和创新的丝材生产工艺,并总结了工业上最受关注的 Al-Cu-Li 合金,以鼓励和促进选择最合适的丝材成分。每种合金元素的作用对于 WAAM 中的特定丝材设计都至关重要;本综述描述了每种元素的作用(通常通过时效硬化、固溶和晶粒尺寸减小来强化),特别关注锂。同时,WAAM 部件中的缺陷限制了其适用性。因此,本文提到了与 WAAM 工艺相关的所有缺陷以及与合金化学成分相关的缺陷。最后,总结了未来的发展,包括最适合 Al-Cu-Li 合金的技术,例如 PMC(脉冲多控制)和 CMT(冷金属转移)。
通过烧结机械合金化的 Fe 和 Si 粉末与 Mn、Co、Al、P 作为 p 型和 n 型掺杂剂,制备了添加了 B 4 C 纳米粒子的 β-FeSi 2 。随后将固结样品在 1123 K 下退火 36 ks。退火后烧结物的 XRD 分析证实了从 α 和 ε 几乎完全转变为热电 β-FeSi 2 相。样品表面的 SEM 观察结果与衍射曲线相符。TEM 观察结果显示 B 4 C 纳米粒子均匀分布在材料中,没有可见的聚集体,并确定了晶粒尺寸参数 d 2 < 500 nm。所有掺杂剂都有助于降低热导率和塞贝克系数,其中 Co 对提高与参考 FeSi 2 相关的电导率的影响最大。结合添加 Co 作为掺杂剂和 B 4 C 纳米粒子作为声子散射体,Fe 0.97 Co 0.03 Si 2 化合物的无量纲性能系数 ZT 在 773 K 时达到 7.6 × 10 –2。将所检测的烧结物与之前制造的相同化学计量但不添加 B 4 C 纳米粒子的烧结物的热电性能进行比较,发现它们总体上具有负面影响。关键词:二硅化铁、纳米粒子、热电材料
由于其优异的性能,先进陶瓷、金属和复合材料等硬质材料具有巨大的经济和社会价值,可应用于众多行业。了解它们的微观结构特征对于提高其性能、材料开发和释放其未来创新应用的潜力至关重要。然而,它们的微观结构显然是分层的,通常跨越几个长度尺度,从亚埃到微米,这对它们的表征提出了严峻的挑战,尤其是原位表征,这对于理解控制微观结构形成的动力学过程至关重要。本综述全面描述了快速发展的超小角度 X 射线散射 (USAXS) 技术,这是一种探测硬质材料纳米到微米级特征的无损方法。USAXS 及其补充技术在为硬质材料开发和应用时,可以提供有关其孔隙率、晶粒尺寸、相组成和不均匀性的宝贵见解。我们讨论了 USAXS 在硬质材料中的基本原理、仪器、优势、挑战和全球地位。通过选定的示例,我们展示了该技术在揭示硬质材料微观结构特征方面的潜力,以及它与先进材料开发和制造工艺优化的相关性。我们还提供了对 USAXS 持续发展的机遇和挑战的看法,包括多模态表征、相干散射、时间分辨研究、机器学习和自主实验。我们的目标是促进 USAXS 技术的进一步实施和探索,并激发它们在硬质材料科学的各个领域的更广泛应用,从而推动该领域的发现和进一步发展。
本研究旨在研究在淬火和回火条件下42CRMO4钢的微结构特征,环状轴向行为和应变反应。42CRMO4钢以杆状形式制备,并进行淬火和回火。进一步进行了微观结构分析,以确保所有方向的晶粒尺寸和分布均匀。此外,还进行了拉伸测试,以确定材料的最终应力和平均屈服强度分别为1113.182 MPa和736.634 MPa。还以0.35%,0.50%,0.65%,0.80%,0.95%和1.10%的应变幅度进行低周期疲劳测试。结果表明,所有指定的应变幅度均表现出循环应激软化。应变控制的疲劳测试进一步表明,合金在前几个周期后经历了循环软化,直到失败。以较高的应变幅度增加了以软化比(SR)为特征的软化程度,稳定在0.58%至1.10%之间。磁滞回路的形状通常是对称的,这归因于滑移变形模式。这种42CRMO4钢易受相对于应变振幅和负载方向的动态应变老化的影响。使用Coffinmanson方程和塑性应变能量密度方程式,在中年确定的应变控制的轴向疲劳特性与良好的生活预测相关。因此,研究观察到,使用SEM的分子分析表明,在单调和循环载荷下,在42CRMO4钢上进行了多个裂纹启动,其特征是同时滑移出现。
摘要。多孔培养基中的热传输对于获得地球科学过程的理解和工程应用(例如地热系统设计)至关重要。通常通过假设有热量平衡(LTE;固体和流体相位)或局部热非平衡(LTNE;固体和流体相)来简化热传输模型,但长期以来已经考虑了热传输,并已提出了报告。但是,文献中仍然缺乏具有逼真的晶粒大小和流量条件的实验。为了检测LTNE效应,我们以3至23 md-1的达西速度进行了全面的实验室热传输实验,并分别测量了玻璃球的流体和实心相的温度,直径为5、10、15、20、25、25、25和30 mm。每个大小的四个复制品沿着流路径的离散距离嵌入小玻璃珠中,以稳定流量。我们的传感器经过精心校准,并进行了对调查以显示LTNE,以表达为固体温度和流体温度之间的差异。为了深入了解热传输性能和过程,我们使用普遍接受的LTE方程分析解和LTNE方程的数值解在1D中模拟了我们的实验结果。我们的结果表明,晶粒尺寸和水流速度的增加表现出显着的LTNE效应。由令人惊讶的是,相同深度的流体和实心相之间的温度差异不一致,表明流量轨道中的空间变量可能引起的不均匀热传播。
我们报告了使用激光粉末床熔合 (LPBF) 对镍基高温合金金属基复合材料 (Ni-MMC) 进行增材制造 (AM) 的方法。通过高速搅拌机分簇和球磨原样 SiC 纳米线 (2 vol%) 和 Inconel 718 合金粉末来制备含纳米陶瓷的复合粉末,从而在 Inconel 颗粒表面产生均匀的 SiC 装饰。对打印样品的分析表明,SiC 纳米线在激光熔化过程中溶解,导致 Nb 和 Ti 基硅化物和碳化物纳米颗粒的原位形成。这些原位形成的纳米颗粒使 AM Inconel 718 的凝固微观结构更理想,打印缺陷(裂纹和孔隙)更少,晶粒尺寸略有细化。与未添加 SiC 的参考样品相比,打印的 Ni-MMC 的机械特性表明,硬度、屈服强度(增加 16%)和极限拉伸强度(σ UTS ,增加 12%)均显著增加。经过热处理后,与经过相同处理的未增强材料相比,相同的复合材料样品的 σ UTS 高 10%,同时总拉伸伸长率保持约 14%。我们认为,这种原位沉淀物形成为强化增材制造的高温材料提供了一种简单有效的方法,可用于能源和推进应用中日益恶劣的环境。
使用自动燃烧的溶胶 - 凝胶方法合成镍铝(NIAL 2 O 4)纳米颗粒。制备的纳米颗粒分为四个部分,并在700、900、1100和1300℃时钙化,并进行了本研究。使用粉末X射线衍射(XRD),扫描电子显微镜(SEM),能量分散X射线光谱(EDS),傅立叶变换和红外(FT-IR)光谱镜(FT-IR)光谱和UV-VIS光谱技术来表征吸收的纳米颗粒。X射线衍射模式证实了尖晶石结构和FD3M空间组。Scherrer公式用于计算结晶石尺寸,并在5.78至20.55 nm的范围内发现,而晶格参数的范围为8.039至8.342Å。在142.80至187.37 nm的范围内发现平均晶粒尺寸,而间间距的范围为2.100至2.479Å。FTIR光谱显示在400至3450 cm -1的范围内显示了六个吸收带,并确认了尖晶石结构。光条间隙(E G)随钙化温度降低,并在4.2129-4.3115EV范围内发现。关键字:镍铝制纳米颗粒; Sol-Gel自动燃烧法;钙化温度;结晶石尺寸;粒度;元素分析; IR和UV-VIS光谱PACS:75.50.GG,61.05.cp,68.37.hk,78.40.fy,33.20.ea,42.70.qs
摘要:过渡金属二核苷(TMDS)吸引了广泛的各种设备应用的研究兴趣。原子层沉积(ALD)是一种CMOS兼容技术,可以使8至12英寸的高质量TMD纤维制备。用于大规模电路集成的晶圆。但是,ALD增长机制仍然尚未完全理解。在这项工作中,我们系统地研究了WS 2的生长机制,并发现它们与成核密度和纤维厚度有关。透射电子显微镜成像揭示了不同生长阶段下侧向和垂直生长机制的共存和竞争,并且获得了每种机制的临界厚度。当膜厚度保持小于5.6 nm(8层)时,平面内侧生长模式主导,而当厚度大于20 nm时,垂直生长模式占主导地位。从对这些生长机制的最终理解中,膜沉积的条件得到了优化,最大晶粒尺寸为108 nm。WS 2-基于效应的晶体管分别用电子迁移率和/o效率比分别为3.21 cm 2 v -1 s -1和10 5。,这项工作证明了TMDFIFM在晶状体尺度上具有出色的厚度和形态可控性的能力,从而使除晶体管以外的许多潜在应用,例如基于纳米或纳米丝的超级电容器,电池,传感器和催化。关键字:过渡金属二盐元化,原子层沉积,晶圆尺度,ws 2,fie fief-ect-exect transistors■简介