1。引言传统的电池充电方法通常会因效率,安全性和多功能性而困难。该项目使用半导体设备晶闸管介绍了一种新颖的方法,以精确调节各种电池的充电电流,包括在汽车,摩托车和太阳能电池板系统中常见的12V铅酸电池。这种创新技术可确保最佳效率,在传递所需功率的同时最大程度地减少浪费能量。晶闸管控制还通过精心调节充电过程,防止过度充电,过热和潜在的电池损坏来促进安全。此外,这种方法的灵活性允许针对各种电池类型和尺寸量身定制,使其适用于广泛的应用。自动功能(例如计时器和电压监视)通过在达到满容量时自动停止充电,从而进一步提高了安全性和便利性。尽管存在初始组件和设计成本,但由于优化的充电过程和延长电池寿命,长期成本效益是不可否认的。总体而言,基于晶闸管的充电是一种可靠,高效且安全的解决方案,用于在各种应用中为电池充电[1]。2。使用晶闸管实施可充电电池适配器的文献综述一直是许多已发表论文的主题。R. K. Aggarwal和V. K. Gupta的一篇论文名为“ Thyristor Controled电池充电器”,描述了晶闸管控制的电池充电器的设计和实现。此外,显示了电池充电器上进行的试验结果[2]。本文讨论了在电池充电器中使用晶圆器的好处,包括它们调节充电电流和防止过度充电的能力。此外,还提供了在电池充电器上进行的实验结果[1]。S. K. Pandey和A. K. Mishra撰写的“电动汽车的电池充电器”详细介绍了用于电动汽车的基于晶闸管的电池充电器。文章中讨论了为电动汽车创建电池充电器的困难,包括提供高充电电流并防止电池过度充电的要求。晶闸管,包括硅控制整流器(SCR),门关闭晶闸管(GTOS)和
神无川水力发电站概况 东京电力的神无川抽水蓄能发电站由作为上、下水库的两处人工水体(奥三川湖是在日本长野县东部南矢池村附近的信浓川支流南矢池川的上游修建南矢池水坝而形成的上水库,奥三池湖是在日本群马县西南部上野村附近的利根川支流神无川的上游修建上野水坝而形成的下水库)、连接两处水库的引水隧道以及位于群马县一侧两处水库之间地下约 500 m 处的发电站建筑物组成。图 2 是显示神无川水力发电站位置的地图。神奈川水力发电站利用上、下水库之间的有效水头(高差)653米,是一座纯抽水蓄能电站,每台发电机发电量为470兆瓦。虽然这一水头略低于东京电力鹿角川水力发电站的714米,但
神无川水力发电站概况 东京电力的神无川抽水蓄能发电站由作为上、下水库的两处人工水体(奥三川湖是在日本长野县东部南矢池村附近的信浓川支流南矢池川上游修建南矢池水坝而形成的上水库,奥三池湖是在日本群马县西南部上野村附近的利根川支流神无川上游修建上野水坝而形成的下水库)、连接两处水库的水道以及位于群马县一侧两处水库之间地下约500米处的发电站建筑物组成。图2 是显示神无川水力发电站位置的地图。神奈川水力发电站利用上、下水库之间的有效水头(高差)653米,是一座纯抽水蓄能电站,每台发电机可发电470兆瓦。虽然这个水头略低于东京电力鹿角川水力发电站的714米,但
前言 几年前发生了两起涉及 HVDC 晶闸管阀的重大火灾事件,一起发生在 1989 年 5 月,地点是巴西 Itaipu ± 600 kV 6300 MW 双极 HVDC 系统的 Foz do Iguaçu 换流站,另一起发生在 1990 年 6 月,地点是印度 Rihand - Delhi ± 500 kV 1500 MW 双极 HVDC 系统的 Rihand 换流站。CIGRÉ 第 14 研究委员会:直流链路和电力电子设备,应其成员在 1991 年 9 月于印度新德里举行的研究委员会会议上的要求,被分配了研究“HVDC 阀和阀厅的火灾问题”的任务,并就该主题向 CIGRÉ 工作组 14.01:“HVDC 和 SVC 的阀门”提交报告。 1992 年 5 月成立了 14.01.04 特别工作组:“高压直流阀门和阀厅的火灾问题”。1993 年 10 月 30 日,美国加利福尼亚州 ± 500 kV 1100 MW 太平洋高压直流联络线扩建计划的西尔玛换流站(东)发生了第三次重大高压直流晶闸管阀门火灾。本报告是特别工作组对火灾问题进行审查的结果。报告提供:。调查阀门和阀厅火灾的可能原因。。通过向用户提供有关实际系统和实践的信息来协助用户。。为用户和供应商提供的指南,特别是在规范、工程和施工方面。。各种火灾探测和保护系统的比较信息。。有关火灾报警和火灾控制系统的信息。。有关