20 世纪 60 年代末,波音公司获得了一份为阿波罗 15、16 和 17 号任务建造月球车的合同。工程师们开发了一种简单的轻型月球车,可以存放在月球探测舱 (LEM) 的外部。这些车辆重 464 磅。可以承载总重达 1600 磅的机组人员、便携式生命支持系统、通讯设备、科学设备、摄影器材和月球样本。月球车 (LRV) 由两个 36 伏电池供电,驱动位于每个车轮上的四个 ¼ 马力电动机,运行范围为 57 英里。然而,由于宇航员便携式生命支持系统的限制,LRV 被限制在距离 LEM 6 英里的半径范围内。图 2.1 显示了月球表面的 LRV。
对于月球表面的开发,日本国内外都在开发月球轨道站 (Gateway)、月球着陆器和月球探测车。此外,还正在研究旨在在月球表面生活的建筑和发电技术。特别是,为载人操作而设计的系统需要配备防护结构,以防可能来袭的微流星体和轨道碎片 (MMOD) 造成人员伤亡 (1)。载人航天器的典型 MMOD 防护结构是惠普尔防护罩,由称为“保险杠”的板和后壁组成,保险杠通过隔离物 (2) 连接到后壁的外表面,如图 1 (a) 所示。目前运行的国际空间站(ISS)日本实验舱(JEM)和H-II转移飞行器(HTV)均采用了三菱重工株式会社开发的MMOD防护结构,没有因微流星体或空间碎片撞击而出现功能损坏(图1(b))。
三菱重工株式会社 (MHI) 除了主营业务的发射服务和与空间站和国际太空探索相关的工作外,还致力于小型卫星的开发。我们最近收到了日本宇宙航空研究开发机构 (JAXA) 的订单,要求开发和运营 RAPid 创新有效载荷演示卫星 3,并正在推进这颗卫星的开发,以确保在低成本和短期开发的限制范围内的可靠性。此外,在小型卫星推进系统的开发方面,我们已经完成了绿色推进剂推进系统的开发和在轨演示,并计划在未来进入小型卫星市场。此外,我们还收到了 JAXA 的订单,要求为月球探测智能着陆器 (SLIM) 提供主推进器和推进剂箱,目前正在进行开发。我们还计划将它们应用于未来使用小型卫星或探测器的太空探索。
太空任务规划和航天器设计紧密耦合,需要一起考虑才能获得最佳性能;然而,这个集成优化问题会导致大规模的混合整数非线性规划 (MINLP) 问题,而该问题的求解十分具有挑战性。为了应对这一挑战,本文提出了一种新的解决该 MINLP 问题的方法,即遵循多学科设计优化 (MDO) 的理念,通过增强拉格朗日协调方法迭代求解一组耦合子问题。所提出的方法利用问题的独特结构,将其分解为一组不同类型的耦合子问题:任务规划的混合整数二次规划 (MIQP) 子问题和航天器设计的一个或多个非线性规划 (NLP) 子问题。由于可以将专门的 MIQP 或 NLP 求解器应用于每个子问题,因此所提出的方法可以有效地解决原本难以解决的集成 MINLP 问题。还提出了一种自动有效的方法来寻找这种迭代方法的初始解,这样就可以在不需要用户定义的初始猜测的情况下进行优化。在演示案例研究中,使用子系统级参数化航天器设计模型优化了载人月球探测任务序列。与最先进的方法相比,即使没有并行化,所提出的公式也可以在更短的计算时间内获得更好的解决方案。对于更大的问题,所提出的解决方法也可以轻松并行化,因此有望进一步发挥优势和可扩展性。
ispace 和小行星采矿公司同意执行未来的月球任务 东京——2024 年 10 月 9 日——全球月球探测公司 ispace, inc. (ispace) (TOKYO: 9348) 和总部位于伦敦的太空机器人公司小行星采矿公司 (AMC) 两家公司今天宣布,已达成协议,将在未来的 ispace 月球表面任务中进行太空机器人演示。 两家公司签署的谅解备忘录提供了一个合作框架,该框架设想了一项未来的任务,其中 ispace 月球着陆器将把 AMC 的太空机器人(太空能力小行星机器人 - 探测器或 SCAR-E)送到月球表面,作为未来小行星采矿工作的技术演示。 在太空中,SCAR-E 可用于小行星和月球的资源探索,能够应对传统轮式探测车目前无法进入的地形,例如陨石坑。 ispace 最早将在 2024 年 12 月之前发射 RESILIENCE 月球着陆器(这是该公司的第二次月球运输任务),该公司同时在美国和日本的业务实体中设计了两个后续系列的月球着陆器。一旦达成任务计划并获得资金,SCAR-E 机器人将在未来的任务中亮相。