3.自 2022 年 11 月首次公开发布以来,ChatGPT 因其类似人类且细致入微的响应而受到称赞。然而,也有人批评 ChatGPT 偶尔会产生误导事实的信息——科技界称之为“幻觉”。2 尽管 ChatGPT 存在局限性,但航运业已经开始讨论利用 ChatGPT 解决客户对交货时间、产能利用率、制裁风险标记等方面的疑问的可能性。3 据报道,ChatGPT 的高级版本已经通过了明尼苏达大学法学院的考试——尽管成绩并不理想,但也有人质疑其是否有可能取代律师。4 作者对普遍的共识感到欣慰(同样,在撰写本文时),即虽然人工智能可以帮助律师,但一个有血有肉、负责任、对客户需求敏感、能提供创造性解决方案的好律师仍然是必不可少的(目前)。5 4.尽管围绕 ChatGPT 进行了讨论,但人工智能的能力。法学硕士作为仲裁员、评估员、裁判员或裁决者满足海事争议解决的需求迄今为止仍是未知领域。本文旨在探索人工智能的这种潜力。法学硕士针对海事行业争议解决的目标。为此,本文将概述海运业争议解决的主要特征,然后对公开的 ChatGPT 版本 3.5 进行的三项测试进行评估。最后,本文将
摘要 - 在这项开创性的研究中,我们利用书目分析来探索社会5.0背景下供应链不断发展的景观。我们的调查突出了有关此新兴范式中有关“纳米棒”的关键研究差距。通过关注这一迷人的异常现象,我们的目标是阐明社会时代的供应链的不受欢迎的方面。这种引人注目的启示是从对10个国家的学术著作的广泛回顾中提取的,不仅强调了社会5.0的不断提高的意义,而且还标识了等待探索的知识相关或进一步的差距。当我们站在深刻的技术进步和社会变态的边缘时,这项研究突显了对纳米斯托勒斯和社会5.0之间复杂联系的不深度探索的迫切需求。作为一个澄清的呼吁,我们的研究引发了话语,并敦促进一步的调查以在这种范式转变中释放纳米斯托尔斯的潜在潜力和深刻含义。与我们一起进入供应链的未来之旅,纳米诺斯顿(Nanostores)成为关键的参与者,有可能掌握着社会未知领域5.0的关键。为您自己的精神探索,以探究纳米恒星在这种变革性范式中存在的可能性领域。
PGDM,Apeejay 管理学院,新德里 摘要 随着全球商业格局发生前所未有的转变,快速商务(Q-commerce)已成为一股颠覆性力量,重新定义了传统零售模式。本研究论文深入探讨了蓬勃发展的印度市场背景下快速商务的复杂方面。该研究旨在全面分析快速商务生态系统、其演变、增长、关键参与者以及零售商、杂货商和电子商务公司面临的挑战。探索消费者行为在塑造快速商务平台成功方面的作用。此外,本文还研究了快速商务的监管格局和政策影响,阐明了潜在的监管挑战以及为促进可持续增长而需要建立平衡的监管框架。总之,这项研究为印度快速商务的变革力量提供了宝贵的见解,让利益相关者、政策制定者和行业参与者对这一充满活力的行业快速发展所带来的挑战和机遇有了细致的理解。随着印度探索 Q 商务的未知领域,这项研究将成为战略决策和政策制定的路线图,为数字时代更具弹性和包容性的零售生态系统铺平道路。第 1 章简介 1.1 文献综述 1. Emerald 洞察 Avil Saldanha,2023 年 8 月 8 日:Zepto 因其备受争议的 10-
全基因组测序 (WGS) 在医疗保健和研究中的应用日益广泛,使我们能够识别非编码区域中的大量变异,从而激发了近年来人们对这些非编码变异及其生物学意义的兴趣。越来越多的证据表明,功能性非编码变异可能是外显子组测序队列中遗传性缺失的原因,其中很大一部分患者未得到分子诊断(74)。值得注意的是,全基因组关联研究 (GWAS) 发现的近 90% 的疾病相关变异位于非编码区域,它们富含转录调控元件 (TRE),可能通过扰乱基因调控发挥作用(81)。尽管非编码变异在人类疾病中发挥着至关重要的作用,但由于我们对非编码区域的了解有限,对非编码变异的解释和优先排序长期以来一直受到阻碍。大型联盟(如 ENCODE (32) 和 FANTOM5 (5))和独立研究小组在这一未知领域对潜在功能元件进行注释方面取得了巨大进展。在这篇综述中(图 1),我们首先讨论了调控格局的各种注释,以及这些努力如何帮助解读非编码变异的生物学影响。然后,我们描述了通过整合这些功能注释来确定非编码变异优先次序的生物信息学工具的进展。最后,我们提出了一系列实验分析来评估候选变异的调控潜力。
确定性产生力量。确定性使人有依靠。不确定性产生弱点。不确定性使人犹豫不决,甚至害怕,即使方向正确,犹豫不决也可能无法克服重大障碍。成为一名科学家不仅需要智慧和好奇心,还需要热情、耐心、创造力、自给自足和勇气。这不是冒险进入未知领域的勇气。这是接受——事实上,拥抱——不确定性的勇气。正如十九世纪伟大的法国生理学家克劳德·伯纳德所说,“科学教会我们怀疑。”科学家必须接受这样一个事实,即他或她的所有工作,甚至信仰,都可能因一个实验室发现而分崩离析。正如爱因斯坦拒绝接受自己的理论,直到他的预测得到检验一样,人们必须寻找这样的发现。归根结底,科学家除了探究过程之外什么都没有。即使在不确定的情况下也要有力而积极地前进,这需要比身体勇气更深的信心和力量。所有真正的科学家都存在于边疆。25 即使他们中最没有野心的人,也会处理未知的事情,哪怕只是比已知多一步。他们中最好的人深入荒野地区,在那里他们几乎一无所知,在那里,清理荒野、给荒野带来秩序所需的工具和技术都不存在。在那里,他们以有纪律的方式进行探索。在那里,只要迈出一步,他们就能透过镜子进入一个似乎完全不同的世界,如果他们至少部分正确的话,他们的探索就像一块水晶,从混乱中沉淀出秩序,创造出形式,
海军研究生院 (NPS) 空间系统工程专业学生 Mitchell Kempisty 中尉利用自己的时间和资源,冒险进入未知领域,通过专利程序发明了一项发明,他希望这项发明能够提高海军制服织物名牌的耐用性。Kempisty 可以说是一个超级成功者。作为 NPS 的学生,他全身心投入到自己的论文中,论文题目为“在阳光安全模式下优化 NASA 月球侦察轨道器的姿态,以最大限度地减少当地轨道天体对星跟踪器的阻碍”。但这还不够,这位 2020 年海军水面部队年度船舶管理员表示,他在两艘舰船上服役期间看到了改进的机会,当时他注意到船上工作制服上的名牌补丁有很多磨损,尤其是那些用钩环粘在工作服和工作衬衫上的补丁。巧合的是,Kempisty 以前的两艘船都被用作海军试验台,用于测试 2019 年最新款阻燃船上服装——两件套 III 型 NWU(海军工作服)。“所有海军水手都要面对的一个问题是他们工作服上的名牌,现在新 NWU 上的名牌很快就变得凌乱不堪,看起来不专业,”Kempisty 指出。“我想出了一个可申请专利的想法,即为补丁上的钩环提供工业加固,以保护它并保持它看起来专业。”
摘要:向太空发射的长波辐射 (OLR) 是地球能量预算的基本组成部分。有许多相互交织的物理过程会影响 OLR,并推动和应对气候变化。光谱解析观测可以解开这些过程,但技术限制阻碍了精确的空间光谱测量,覆盖 100 至 667 cm −1(波长在 15 至 100 µ m 之间)的远红外 (FIR)。因此,地球的 FIR 光谱基本上无法测量,即使至少一半的 OLR 来自此光谱范围。该地区受到对流层上部和平流层下部水蒸气、温度递减率、冰云分布和微物理的强烈影响,所有这些气候系统中的关键参数都变化很大,而且仍然很少被观察和理解。为了覆盖地球观测中这一未知领域,远红外外向辐射理解与监测 (FORUM) 任务最近被选为 ESA 的第九个地球探测器任务,将于 2026 年发射。FORUM 的主要目标是首次以高绝对精度测量光谱分辨 OLR 的远红外分量,具有高光谱分辨率和辐射精度。该任务将提供全球观测的基准数据集,这将大大增强我们对地球大气关键强迫和反馈过程的理解,从而能够更严格地评估气候模型。本文介绍了该任务的动机,强调了新测量预期带来的科学进步。
遗传密码研究探索了生命的基本语言,旨在了解 DNA 如何协调蛋白质的合成。本研究探索了遗传密码的各个方面,从广泛使用的三联体密码子系统到转移 RNA (tRNA) 在翻译中的重要作用。本研究揭示了密码子和反密码子之间相互作用的复杂性以及核糖体的协调,阐明了蛋白质合成的起始、延长和终止阶段。此外,它还深入研究了影响翻译过程的调节因素和质量控制机制。在探索遗传密码的进化过程中,本研究仔细研究了它的普遍原则、例外情况以及围绕其起源的令人信服的猜想。tRNA 和密码子的共同进化,以及在不同生物体和细胞器中观察到的密码的适应性,提供了有价值的见解。值得注意的是,这项研究强调了基因工程、密码子优化和蛋白质设计等广泛的生物技术应用。这项研究不仅解决了遗传密码研究中的未知领域,还提出了未来的研究方向。它强调了该领域当前的挑战和机遇,包括密码扩展和基因编辑进步。最终,遗传密码研究仍然是一个充满活力、不断发展的领域,对科学、技术和我们对生命基本过程的理解具有深远的影响。这项研究揭示了遗传密码的迷人故事,揭示了继续吸引和启发人们的新领域和应用。
摘要经硫代蛋白(TTR)是一种在血液和脑脊液中发现的本质四聚甲状腺素转运蛋白,其错误折叠和聚集会导致经胆囊素淀粉样变性。将小分子tafamidis(Vyndaqel/vyndamax)鉴定为天然TTR倍数的有效稳定剂,并且这种聚合抑制剂是用于治疗TTR淀粉样蛋白病的治疗的监管机构批准的。尽管对TTR进行了50年的结构研究以及基于结构的药物设计的胜利,但仍有明显的结构信息可用于了解配体结合变构和淀粉样蛋白生成的TTR展开中间体。,我们使用单粒子冷冻电子显微镜(冷冻EM)研究了一个55千达尔顿四聚体的构象形态,在一个或两个配体的情况下,揭示了四腔体系结构中固有的不对称性,并且先前未观察到的构象状态。这些发现提供了对负合作配体结合和负责TTR淀粉样生成的结构途径的关键机理见解。这项研究强调了冷冻EM提供对蛋白质结构的新见解的能力,这些蛋白质结构在历史上被认为太小而无法可视化,无法识别由晶体晶格的构造所抑制的药理靶标,从而在基于结构的药物设计中开放了未知领域。
缩写列表 4 引言 7 1. 国防逐步国际化:芬兰加入北约的漫漫长路 9 1.1. 不结盟时代:1992-2014 9 1.2. 结盟时代:2014-2022 10 1.3. 结盟时代来临:芬兰为何申请加入北约? 11 2. 重建威慑与防御:后2022 时代的北约 14 3. 北约的东北翼:芬兰在欧洲战略地图上的位置 16 4. 32 国联盟中的一个成员:北约相关决策与外交 18 5. 协调国家与集体防御:芬兰与北约国防规划进程 20 6. 走向结构化联盟:芬兰与北约的指挥与部队结构 23 6.1. 指挥结构 23 6.2.部队结构 25 7. 周密的计划是成功的一半:芬兰和北约的作战规划 27 8. 提供存在:芬兰和北约的和平时期集体防御和威慑任务 29 8.1. 增强前沿存在 29 8.2. 空中警务 30 9. 质量优先于数量:芬兰和军事演习 31 10. 进入未知领域:北约的核政策和弹道导弹防御 34 10.1. 北约的核政策和芬兰的替代方案 34 10.2.芬兰和北约导弹防御 37 11. 巩固集体防御:与北约盟国的军事合作 38 11.1. 芬兰加入北约之前的国防合作 38 11.2. 芬兰加入北约后的国防合作 40 12. 连续性高于一切:北约成员国身份和芬兰的外交和安全政策