阿尔忒弥斯任务信息图 29 舱外活动和载人地面机动计划 (EHP) 31 舱外活动和载人地面机动计划 (EHP) – 舱外活动 (EVA) 开发项目(阿尔忒弥斯航天服) 33 舱外活动和载人地面机动计划 (EHP) – 舱外活动 (EVA) 开发项目(国际空间站 (ISS) 航天服) 35 舱外活动和载人地面机动计划 (EHP) – 月球地形车 (LTV) 37 载人着陆系统 (HLS) – 持续月球开发 (SLD) 39 移动发射器 2 (ML2) 41 实施阶段的阿尔忒弥斯主要项目评估 43 门户 45 门户 – 居住和后勤前哨 (HALO) 47 门户 – 动力和推进元件 (PPE) 49 载人着陆系统 (HLS) – 初始能力 51 猎户座多用途机组人员运载火箭(Orion) 53 太阳能电力推进系统(SEP) 55 太空发射系统(SLS)Block 1B 57 挥发物调查极地探测车(VIPER) 59 制定阶段非阿尔忒弥斯重大项目评估 61 蜻蜓计划 63 电动动力系统飞行演示(EPFD) 65 火星样品返回(MSR) 67 实施阶段非阿尔忒弥斯重大项目评估 69
门户是美国宇航局计划在月球和深空旅行的基础设施的基础要素,其他基础设施还包括猎户座飞船、太空发射系统火箭、载人着陆系统以及舱外活动和人类地面机动计划。
轨道数据消息 (ODM):星历表消息 (OEM)、综合消息 (OCM) O/O 联系信息 OCM;可以使用空间数据标准用户配置文件消息 O/O 卫星特性 ODM;+ 卫星目录消息以获取更多信息 O/O 机动计划 ODM:轨道参数消息 (OPM) 和 OCM 卫星标识 ODM:可以使用自由文本字段 部署时间表 ODM:OCM 包括部署时间字段 发射轨迹 ODM 卫星特性数据 ODM:OCM 或可在标准可用时合并到 LDM DOC/商业状态向量 ODM:OPM DOC/商业元素集 ODM:OMM 再入评估 再入数据消息 (RDM)
AAI 事故调查办公室 AAM 航空医学办公室 AAMP 先进飞机机动计划 AC 咨询通告 ACE-100 小型飞机理事会 ACO 飞机认证办公室 ACSEP 飞机认证评估系统 AD 适航指令 AEG 飞机评估组 AFS 飞行标准 AIR 飞机认证服务 ANM-100 运输飞机理事会 APC 飞机-飞行员耦合 ARAC 航空规则制定咨询委员会 ATM 空中交通管理 ATOS 空中运输监督系统 AVS 航空安全副局长 CDR 关键设计评审 CFR 联邦法规 CIR 一致性检查报告 CM 状态监测 CMT 认证管理小组 CNS 通信、导航、监视 CPS 商用飞机认证过程研究 CMR 认证维护要求 CWT 中央机翼油箱 DAR 指定适航代表
本文讨论了 NASA 先进太空服压力服技术开发团队当前工作的重点、工作状态以及长期技术开发重点和活动的总结。探索舱外活动机动装置 (xEMU) 是该团队过去几年的主要工作。2022 年的 ICES 论文详细介绍了 xEMU 压力服组件的设计。本文概述了自那时以来对 xPGS 的设计更新。更值得注意的是,本文记录了使用 xPGS 执行的各种测试,以评估其在微重力和月球任务中的性能、耐用性和可接受性。概述了正在进行和计划中的 xEMU 测试和培训。讨论了 PGS 团队从 xEMU 开发和测试到支持探索舱外活动服务 (xEVAS) 供应商的过渡。此外,还将讨论与舱外活动和人类表面机动计划 (EHP)、NASA 工程安全委员会 (NESC) 和小企业创新研究 (SBIR) 计划协调开展的技术开发工作,以支持未来十年在月球表面持续开展舱外活动。最后,将简要回顾长期压力服面临的挑战和技术差距,以便了解先进压力服团队的技术投资重点和需求。
摘要 自主性是未来太空任务中越来越重要的组成部分,新技术对于应对可能对任务成功构成风险的机载异常事件是必不可少的。在寻找一个令人满意的机动计划来纠正意外事件时,对于地月空间的机载低推力任务应用来说,初步确定合适的收敛域仍然具有挑战性。这项研究通过展示人工神经网络作为估计传统迭代制导和控制方法的准确启动解决方案的有前途的工具来解决这一挑战,从而产生了一个强大的“混合”架构,该架构同时受益于神经网络的计算简单性和目标方案的稳健性,以满足准确性要求并确保任务成功。在这个范例中,差分校正直接纳入强化学习过程,任务是让生成的神经网络控制器进行轨迹恢复的初始猜测识别。在“失控”航天器场景中演示了快速低推力机动规划,其中随着时间的推移,偏离计划的近直线光环轨道路径导致定位无效,并且需要采用替代方法来确定有效的恢复计划。关键词:航天器自主性、强化学习、低推力、地月空间、神经网络控制
首字母缩略词 .cvs Excel codex ⁰ 度 < 小于 % 百分比 ABC Artemis 大本营 ACES 学院颜色编码系统 ANOVA 方差分析 CEL 概念探索实验室 cm 厘米 conops 作战概念 deg 度 DEM 数字环境模型 DOUG 动态机载无处不在的图形 DRATS 沙漠研究和技术研究 DSN 深空网络 DTE 直接对地 EDGE 探索图形 EHP 美国宇航局的舱外活动和人类地面机动计划 ESDMD 探索系统发展任务理事会 EVA 舱外活动 F ANOVA F 值 FOD 异物碎片 FOV 视场 fps 每秒帧数 GUNNS 通用节点网络求解器软件 HAB 栖息地 HDR 高数据速率 HITL 人在回路 hh:mm:ss 小时、分钟、秒 IES 照明工程学会 IMU 惯性测量单元 ISRU 现场资源利用单元 JEOD 约翰逊航天中心工程轨道动力学集团 JSC 约翰逊航天中心 kg 千克 km 公里 kph 公里每小时 千瓦 千瓦时 千瓦每小时 激光雷达 光增强探测与测距
• 1997 年 5 月,美国航空公司运营的另一架 A300B4-605R 飞机(AA 903 航班)发生了一起非致命事故,涉及类似的方向舵踏板输入,因此导致非常高的尾翼负载。这是上面提到的四个事件之一。这起事故促使包括空客在内的三大机身制造商和美国联邦航空局的一名代表联合签署了一封前所未有的信,警告美国航空公司 (1) 在其训练“高级飞机机动计划”(AAMP) 中提倡使用方向舵进行滚转控制的危险和 (2) 使用无法提供真实反馈来训练这些失控恢复机动的模拟器所带来的“负面训练”的固有危险。这些明确的警告以及应使用的正确技术随后在多个出版物和演示文稿中公布和重复,例如空中客车在 AA 903 调查中提交的资料,以及空中客车和其他制造商于 1998 年出版的行业出版物《失速恢复训练辅助》。此外,NTSB 报告正确地确定了此事件的原因:“机组人员在平飞期间未能保持足够的空速,导致意外失速,随后他们未能使用正确的失速恢复技术”(着重强调)。NTSB 公开案卷文件 ID N° 266610 清楚地表明,美国航空公司完全了解这起事故的原因,并且在 AA587 事故发生之前就知道 AAMP 中开发的方向舵使用理论的危险性。AA 587 事故的根本原因完全相同——使用了 AAMP 中教授的不正确的恢复技术——这与行业培训援助提供的指导和普遍接受的飞行技术原则相矛盾。