1。用频率,波长,波速和简单的谐波运动来描述机械波现象。2。使用流动波的数学描述来描述和预测机械波的运动。3。使用叠加原理来解释和预测两个波的干扰模式。4。描述站立波模式及其与频率,速度和结构维度的关系。5。确定常规声波的共鸣频率。6。确定两个波的叠加的节拍频率。7。使用多普勒效应来解决涉及移动观察者和/或移动源的问题。8。定义电荷,电场,静电力,电势和电势能。9。描述电导体,绝缘体,半导体,超导体,并通过接触和诱导充电。
课程目标 BNCC 规定,科学教学必须包括对声音作为机械波的研究、其特性、传播以及在技术和医学中的应用。目标是培养观察和批判性分析能力,此外还促进对物理现象及其对健康的影响的理解。
人们从物质分类的角度发现了许多全新的拓扑电子材料,包括拓扑绝缘体[5–8]和拓扑半金属[9]。与此同时,量子力学波与经典波的类比启发人们将凝聚态物理学中的许多概念推广到经典波系统,如电磁波、声波和机械波系统。直观地,人们可以将经典波的控制方程(例如电磁波的麦克斯韦方程)转化为哈密顿量。按照这种方法,最初为量子力学波提出的拓扑相最近已在各种经典波系统中实现,[10–17],从而实现了拓扑激光器[18–21]、鲁棒光延迟线[22]和高质量片上通信等许多实际应用。 [23,24] 最近的进展进一步将拓扑态从厄米波系统扩展到非厄米波系统,
通过连续体(BICS)中的结合状态构建高度局部的波场,可促进增强的波浪互动,并为高灵敏设备提供方法。弹性波可以携带复杂的极化,因此与BIC形成中的电磁波和其他标量机械波的不同,尚未充分探索和利用。在这里,我们报告了对羔羊波导侧支支撑的局部共振模式的研究,该模式由两对共振支柱支撑,并显示了两组具有不同极化或对称性的弹性BIC的出现。,两组BIC对外部扰动表现出明显的反应,基于该反应,提出了具有增强敏感性的无标签感应方案。我们的研究揭示了弹性介质中复杂的波动力学引起的BIC的丰富特性,并证明了它们在传感和检测中的独特功能。
在芯片上分配量子纠缠是实现可扩展量子处理器的关键步骤。使用旅行的声子(量化的引导机械波包包)作为传输量子状态的介质,由于与其他载流子(例如电子或光子)相比,由于其尺寸较小,而且传播速度较低,因此现在引起了很大的关注。此外,声子是在芯片上连接异质量子系统的高度有希望的候选者,例如微波炉和光光子通过光纤长距离传输量子。在这里,我们通过实验表明,通过实现两个行进的声子之间的量子纠缠并创建一个时间键 - 编码的传播声音量子量子,可以证明使用声子分发量子信息的可行性。机械量子状态是在光力学腔中生成的,然后发射到声音波导中,在该波导中传播约200微米。我们进一步展示了语音量如何与光子量子量子合作违反铃铛型不平等。
引文:关于物理学中拓扑和对称性的新思想,预测了一种只在表面导电的新材料。描述:自本·富兰克林时代以来,我们就开始区分导电和绝缘的电形式。但查尔斯·凯恩和吉恩·梅勒颠覆了这一概念,他们预测了一种新材料——“拓扑绝缘体”,这种材料在边界上是不可侵犯的电导体,但在内部是绝缘体。他们的发现对量子计算的“太空竞赛”具有重要意义,并可能导致新一代电子设备的出现,从而有望在计算中实现巨大的能源效率。拓扑绝缘体还为深入探究物质和能量的基本性质提供了一个窗口,因为它们表现出类似于物理学基本粒子(电子和光子)的粒子状激发,但可以在实验室中以电子和光子无法控制的方式进行控制。这些连接为控制各种物质状态下的电荷、光甚至机械波的流动提供了一个新的概念框架。意想不到的应用似乎也是不可避免的:当晶体管于 1947 年发明时,没有人能够真正预测到它将带来信息技术,使 TB 级的数据能够塞进一个微小的硅片上。
通过成像对生物力学的无创量化是一个最近令人兴奋的转化研究领域,因为它不仅允许量化有关其刚度调节的基本生物学过程,而且还可以通过晚期诊断来影响患者的途径。在这里,我们将重点介绍MR-Elastography,即通过MRI在3D中进行单频机械波的成像,从而实现了复杂值剪切模量的无偏空间重建,即动态和损耗模量。多频MRE允许随后探索分散性能,正如最近所理解的[1] - 允许通过多个散射过程推断出由于其刚度的强对比度而导致组织脉管系统的空间结构。因此,MRE变成了一种工具,可以量化表征组织内在完整性及其血管组织的本质性质,该特性对于肿瘤表征至关重要,并测量了对治疗的反应。我们将在未来的Precision Medicine中讨论以下“热”主题:1。我们可以识别肝脏在纤维化过程之前因炎症过程而受损的肝脏患者,将其变成不可逆的状态[2]?2。是能够帮助鉴定乳腺癌的新辅助化学疗法中的反应者/非反应者[3]和3。进行神经元过程调节神经元切换时的力学,即最快的速度为10ms [4]?
脉冲波速度(PWV)已被确定为心血管诊断中有希望的生物标志物,为血管健康和心血管风险提供了深刻的见解。定义为机械波沿动脉壁传播的速度,PWV代表了动脉血管刚度的有用替代标记。PWV引起了临床关注,特别是在监测患有高血压和糖尿病等血管疾病的患者时。其效用扩展到预防性心脏病学,有助于鉴定和分层心血管风险。尽管开发了各种测量技术,直接或间接的沟通能力,多普勒超声,振荡分析和磁共振成像(MRI),方法论变异性和缺乏标准化导致PWV评估中的不一致。此外,可以通过替代参数(例如脉冲到达或脉冲运输时间)来估计PWV,尽管这种异质性限制了标准化,因此可以估算其临床用途。此外,混淆因素,例如交感神经的变化,强烈影响PWV读数,从而在评估过程中需要仔细控制。心率变异性(HRV)和PWV之间的双向关系强调了心脏自主功能与血管健康之间的相互作用,这表明一个人的变化可能直接影响另一种。未来的研究应优先考虑标准率并提高PWV测量技术的可比性,并探索影响PWV的复杂生理变量。基于人工智能将多个生理参数(例如PWV和HRV)整合到算法中,这对推进个性化的血管健康评估和心血管护理有很大的希望。
过去 20 年,电路量子电动力学发展迅速,超导量子比特和谐振器用于从根本上控制和研究量子光与物质的相互作用。该领域的发展受到量子信息科学和实现量子计算的前景的强烈影响,但也为不同物理系统和研究领域的结合提供了机会。微波领域的超导电路由于具有强大的非线性和零点涨落,以及设计和制造的灵活性,为与其他量子系统接口提供了一个多功能平台。基于电路量子电动力学的混合量子系统可以通过利用各个组件的优势来实现新功能。本论文涵盖了将超导电路与表面声波 (SAW)(沿固体表面传播的机械波)耦合的实验。可以利用 GaAs 基板的压电特性来实现强耦合,我们的实验利用这一点来研究量子场与物质相互作用的现象。表面声波的一个关键特性是传播速度慢,通常比真空中的光慢五个数量级,并且波长短。这使得在巨型原子领域中,超导电路形式的人造原子比相互作用的 SAW 辐射的波长大,这种情况在其他系统中很难实现。本论文中描述的实验利用这些特性来展示机械模式的电磁感应透明性,以及人造巨原子与 SAW 场之间的非马尔可夫相互作用。当 SAW 场被限制在谐振腔中时,短波长允许多模光谱适合与频率梳相互作用。我们使用多模 SAW 谐振器通过双音光谱方法表征微观两级系统缺陷的集合。最后,我们介绍了一种混合超导-SAW 谐振器,并考虑了其在量子信息处理中的应用。使用该设备进行的实验证明了 SAW 模式的纠缠,并在设计用于连续变量量子计算的簇状态的道路上显示出有希望的结果。