显著 [4]。这对于所介绍的飞机尤其重要,因为航程越短,这三个飞行阶段与巡航的比率就越高。另一个优点是由于 C 翼的重量而导致的机翼载荷和弯矩减小。由于机翼上部和垂直部分的向下力和侧向力,弯矩进一步减小。这种配置增加了尾流涡的消散率,从而可以增加机场每小时的起飞和着陆次数。此外,另一个重要优势是可以制造无尾飞机 [5]。几篇论文解释了非平面配置的好处,并将 C 翼与各种翼尖小翼或平面配置进行了比较。与翼尖相比,通过增加 20-30% 的机翼质量,可以减少巡航总阻力 3% [4]。C 翼的形状必须在整个飞行任务的优化过程中确定 [6, 7]。
摘要:飞行器的安全监测与跟踪越来越重要。在气动载荷作用下,飞行器机翼会产生较大的弯曲和扭转变形,严重影响飞行器的安全。飞行器机翼载荷的变化直接影响飞行器基线的地面观测性能。为了补偿机翼变形引起的基线变形,需要准确获取机翼外形的变形量。传统的飞行器机翼外形测量方法不能同时满足体积小、重量轻、成本低、抗电磁干扰、适应复杂环境等要求,用于飞行器机翼外形测量的光纤传感技术已逐渐被证明是一种具有许多优良特性的实时、在线动态测量方法。本文综述了光纤光栅传感器(FBG)的原理、技术特点和胶接技术。对比分析了其他测量方法的优缺点,重点分析了FBG传感技术在飞机机翼外形测量中的应用现状。最后对提高基于FBG传感技术的飞机机翼外形测量精度提出了综合建议。
摘要:飞机的安全监测与跟踪越来越重要,在气动载荷作用下,飞机机翼会产生较大的弯曲和扭转变形,严重影响飞机的安全。飞机机翼载荷的变化直接影响飞机基线的地面观测性能,要补偿机翼变形引起的基线变形,需要准确获取机翼外形的变形量。传统的飞机机翼外形测量方法不能同时满足体积小、重量轻、成本低、抗电磁干扰、适应复杂环境的要求,而用于飞机机翼外形测量的光纤传感技术已逐渐被证明是一种具有许多优良特性的实时、在线动态测量方法。本文综述了光纤光栅传感器(FBG)的原理技术特点和胶接技术,对比分析了其他测量方法的优缺点,并着重分析了FBG传感技术在飞机机翼外形测量中的应用现状。最后对提高基于FBG传感技术的飞机机翼外形测量精度提出了综合建议。
4 商用飞机燃油系统功能 53 4.1 加油和放油 54 4.1.1 压力加油 54 4.1.2 放油 58 4.2 发动机和 APU 供油 59 4.2.1 供油箱和发动机位置的影响 59 4.2.2 供油泵系统 60 4.2.3 供油箱扫气 65 4.2.4 负 g 考虑因素 65 4.2.5 交叉供油 66 4.2.6 集成供油系统解决方案 67 4.2.7 供油系统设计实践 69 4.3 燃油输送 70 4.3.1 燃油燃烧计划 70 4.3.2 机翼载荷减轻 72 4.3.3 燃油输送系统设计要求 72 4.4 燃油抛弃 73 4.4.1 抛弃系统示例 74 4.5 燃油数量计量 76 4.5.1 架构考虑 78 4.5.2 燃油负荷规划 82 4.5.3 泄漏检测 83 4.6 燃油管理和控制 84 4.6.1 加油分配 86 4.6.2 飞行中燃油管理 88 4.6.3 燃油管理系统架构考虑 91 4.6.4 驾驶舱显示、警告和建议 91 4.7 辅助系统 93
摘要 本项目对初步飞机设计顺序进行了实用描述。该顺序从初步尺寸确定方法开始。设计顺序通过对 ATR 72 涡轮螺旋桨飞机的重新设计研究进行说明。重新设计飞机的要求与 ATR 72 的要求相同。ATR 72 也是重新设计过程中的参考。初步尺寸确定方法(在大学)仅适用于喷气式飞机。因此,该方法也适用于螺旋桨飞机。尺寸确定方法确保满足所有要求:起飞和着陆场长度、第二段和复飞梯度以及巡航马赫数。尺寸确定方法可实现最佳(低)功率/重量比和最佳机翼载荷。重新设计过程涵盖所有飞机部件:机身、机翼、尾翼和起落架。飞机设计顺序定义了机舱布局、机翼参数、高升力系统类型、尾翼配置和表面。进行质量分布分析,计算重心位置并确定机翼位置。最后计算直接运营成本 (DOC)。DOC 是采用欧洲航空公司协会 (AEA) 的方法计算的。DOC 用于飞机评估。为了满足要求,重新设计的 ATR 72 必须与原始 ATR 相比略有修改。例如,重新设计的增升系统增加了缝翼。总体而言,重新设计的飞机的最终参数与原始 ATR 72 相似。由于原始 ATR 72 的数据并非完全公开,因此挑战之一是从原始设计中发现驱动因素和秘密参数。
摘要 本项目对初步飞机设计顺序进行了实用描述。该顺序从初步尺寸确定方法开始。设计顺序通过对 ATR 72 涡轮螺旋桨飞机的重新设计研究进行说明。重新设计飞机的要求与 ATR 72 的要求相同。ATR 72 也是重新设计过程中的参考。初步尺寸确定方法(在大学)仅适用于喷气式飞机。因此,该方法也适用于螺旋桨飞机。尺寸确定方法确保满足所有要求:起飞和着陆场长度、第二段和复飞梯度以及巡航马赫数。尺寸确定方法可产生最佳(低)功率/重量比和最佳机翼载荷。重新设计过程涵盖所有飞机部件:机身、机翼、尾翼和起落架。飞机设计顺序定义了机舱布局、机翼参数、增升系统类型、尾翼配置和表面。进行质量分布分析,计算重心位置并确定机翼位置。最后计算直接运营成本 (DOC)。DOC 是使用欧洲航空公司协会 (AEA) 的方法计算的。DOC 用于飞机评估。为了满足要求,重新设计的 ATR 72 必须与原始 ATR 相比略有修改。例如重新设计的增升系统显示增加了缝翼。总体而言,重新设计的飞机的最终参数与原始 ATR 72 相似。由于原始 ATR 72 的数据尚未完全公开,因此挑战之一是从原始设计中发现驱动因素和秘密参数。
摘要 本项目对初步飞机设计顺序进行了实用描述。该顺序从初步尺寸确定方法开始。设计顺序通过对 ATR 72 涡轮螺旋桨飞机的重新设计研究进行说明。重新设计飞机的要求与 ATR 72 的要求相同。ATR 72 也是重新设计过程中的参考。初步尺寸确定方法(在大学)仅适用于喷气式飞机。因此,该方法也适用于螺旋桨飞机。尺寸确定方法确保满足所有要求:起飞和着陆场长度、第二段和复飞梯度以及巡航马赫数。尺寸确定方法可产生最佳(低)功率/重量比和最佳机翼载荷。重新设计过程涵盖所有飞机部件:机身、机翼、尾翼和起落架。飞机设计顺序定义了机舱布局、机翼参数、增升系统类型、尾翼配置和表面。进行质量分布分析,计算重心位置并确定机翼位置。最后计算直接运营成本 (DOC)。DOC 是使用欧洲航空公司协会 (AEA) 的方法计算的。DOC 用于飞机评估。为了满足要求,重新设计的 ATR 72 必须与原始 ATR 相比略有修改。例如重新设计的增升系统显示增加了缝翼。总体而言,重新设计的飞机的最终参数与原始 ATR 72 相似。由于原始 ATR 72 的数据尚未完全公开,因此挑战之一是从原始设计中发现驱动因素和秘密参数。
摘要 本项目对初步飞机设计顺序进行了实用描述。该顺序从初步尺寸确定方法开始。设计顺序通过对 ATR 72 涡轮螺旋桨飞机的重新设计研究进行说明。重新设计飞机的要求与 ATR 72 的要求相同。ATR 72 也是重新设计过程中的参考。初步尺寸确定方法(在大学)仅适用于喷气式飞机。因此,该方法也适用于螺旋桨飞机。尺寸确定方法确保满足所有要求:起飞和着陆场长度、第二段和复飞梯度以及巡航马赫数。尺寸确定方法可实现最佳(低)功率/重量比和最佳机翼载荷。重新设计过程涵盖所有飞机部件:机身、机翼、尾翼和起落架。飞机设计顺序定义了机舱布局、机翼参数、高升力系统类型、尾翼配置和表面。进行质量分布分析,计算重心位置并确定机翼位置。最后计算直接运营成本 (DOC)。DOC 是采用欧洲航空公司协会 (AEA) 的方法计算的。DOC 用于飞机评估。为了满足要求,重新设计的 ATR 72 必须与原始 ATR 相比略有修改。例如,重新设计的增升系统增加了缝翼。总体而言,重新设计的飞机的最终参数与原始 ATR 72 相似。由于原始 ATR 72 的数据并非完全公开,因此挑战之一是从原始设计中发现驱动因素和秘密参数。
摘要 本项目对初步飞机设计顺序进行了实用描述。该顺序从初步尺寸确定方法开始。设计顺序通过对 ATR 72 涡轮螺旋桨飞机的重新设计研究进行说明。重新设计飞机的要求与 ATR 72 的要求相同。ATR 72 也是重新设计过程中的参考。初步尺寸确定方法(在大学)仅适用于喷气式飞机。因此,该方法也适用于螺旋桨飞机。尺寸确定方法确保满足所有要求:起飞和着陆场长度、第二段和复飞梯度以及巡航马赫数。尺寸确定方法可实现最佳(低)功率/重量比和最佳机翼载荷。重新设计过程涵盖所有飞机部件:机身、机翼、尾翼和起落架。飞机设计顺序定义了机舱布局、机翼参数、高升力系统类型、尾翼配置和表面。进行质量分布分析,计算重心位置并确定机翼位置。最后计算直接运营成本 (DOC)。DOC 是采用欧洲航空公司协会 (AEA) 的方法计算的。DOC 用于飞机评估。为了满足要求,重新设计的 ATR 72 必须与原始 ATR 相比略有修改。例如,重新设计的增升系统增加了缝翼。总体而言,重新设计的飞机的最终参数与原始 ATR 72 相似。由于原始 ATR 72 的数据并非完全公开,因此挑战之一是从原始设计中发现驱动因素和秘密参数。
摘要。飞机推进的电气化可能会为二氧化碳(CO 2)中性空气旅行提供一种方式。在这里,已经飞行的电动飞机示威者主要依靠电池用作能源。虽然电池电概念可能是用于短距离应用的合适解决方案,例如城市空气车,但最先进的电池状态电池的能量密度不足以为具有典型范围为1000海里和70名乘客的区域飞机供电。推进概念适合区域飞机的一种可能的拓扑选项是由燃料电池系统(FCS)和电池组成的混合体。一方面,这个概念使用氢(H 2)作为主要能量载体,与仅电池飞机相比,所需的电池堆栈质量大大减少。是对具有高功率需求的飞行阶段的电池支撑,例如起飞或攀爬,可以较小的燃料电池系统和相应的热管理系统(TMS)的尺寸,因此与仅燃料电池飞机相比,额外的总体系统质量收益。目前的论文分析了电池堆栈支撑燃料电池系统的重量减小潜力,用于典型的区域飞机,涉及杂交系数(HF)和电池特定能量(BSE)。建模包括燃料电池系统和电池堆栈的尺寸,其他机械和电动组件,例如变速箱,电动机和电动电子设备以及相应的TMS。调整了依次的电气化飞机,保持机翼载荷和功率重量比率的恒定。HF和BSE的最佳组合产生的最低MTOM与27 100公斤的最低结合仍然比22 800千克的传统动力参考飞机重约19.9%。研究表明,与可用的最先进的解决方案相比,BSE的未来重量相似的未来飞机需要非常先进的电池技术。