从一开始我们就以最佳的 Savage Cub-S 为出发点,加强和改进机身框架,将座舱高度增加了几厘米,改善了机上的可达性和整体人体工程学,现在更加有利。我们增加了已经很宽敞的 Cub-S 升降舵和方向舵的表面,这是“超慢”飞行的基本要素。由于新的千斤顶螺丝配平系统,稳定器垂直行程已增加,以平衡新的 Hyper Stol 机翼迎角。根据要求,座舱可以用碳纤维装饰,例如仪表板、新地板、凯夫拉增强轻质座椅。在基座上安装了新的油门杆。Rotax 的基本发动机支架是动力聚焦型,发动机罩可以根据要求容纳高达 180 马力的发动机,例如 Lycoming / Titan 或其他品牌。
此前,飞机机身结构定义几何形状中连接机翼机身和垂直尾翼机身的凸耳已提交有限元分析 [2-3]。由于快速加速和复杂运动,机翼表面将承受严重载荷 [4]。由于最大弯矩,机翼根部将经历最高的应力集中 [5]。支架用于将机翼连接到机身框架。机翼的弯矩和剪应力通过这些附件传递到机身 [6]。此外,疲劳是指结构部件强度在运行过程中持续下降,在极低的极限应力水平下就会发生故障。这是由于重复载荷作用时间较长。基于静态结构分析,利用应力寿命技术和 Goodman 标准进行的疲劳寿命计算预测几何形状是安全的 [7]。因此,机翼机身凸耳连接结构采用有限元分析和疲劳寿命计算方法进行设计。
此前,飞机机身结构中连接机翼机身和垂直尾翼机身的吊耳已提交有限元分析 [2-3]。由于快速加速和复杂运动,机翼表面将承受巨大的载荷 [4]。由于弯矩最大,机翼根部将承受最大的应力集中 [5]。支架用于将机翼固定在机身框架上。机翼的弯矩和剪应力通过这些附件传递到机身 [6]。此外,疲劳是指结构部件强度在运行过程中不断下降,在极低的极限应力水平下就会发生故障。这是因为重复载荷作用的时间较长。基于静态结构分析,利用应力寿命技术和 Goodman 标准进行的疲劳寿命计算预测几何形状是安全的 [7]。因此,机翼机身吊耳连接结构采用有限元分析和疲劳寿命计算方法进行设计。
摘要 能够精确测量旋翼叶片动力学的技术几乎可以影响旋翼机领域的所有领域;从维护一直到叶片设计。BladeSense 项目于 2016 年启动,旨在使用能够直接测量形状的新型光纤传感器,在开发和展示这种能力方面迈出一步。在本文中,作者总结了建模和仿真、仪器开发和地面测试方面的关键项目活动。虽然很简短,但还是讨论了这些学科中的工程方法以及相关的挑战和成就。这包括使用计算空气动力学和结构建模来预测叶片动力学,以及开发直接光纤形状传感,允许在叶片上的多个位置上进行 1kHz 以上的测量。此外,还讨论了原型机载系统的开发,该系统克服了在旋转主旋翼和固定机身框架之间传输数据的挑战。 1. 简介
空域系统 (NAS) 中,新程序和技术对于确保空域安全运行和尽量减少 UAS 对当前空域用户的影响是必不可少的。目前,小型 UAS 在民用空域的使用受到限制,因为它们不具备检测和避开其他飞机的能力。在本文中,我们将介绍一个框架,该框架由基于广播式自动相关监视 (ADS-B) 的传感器、航迹估计器、冲突/碰撞检测和解决方案组成,可减轻碰撞风险。ADS-B 提供长距离、全方位入侵者检测,对尺寸、重量、功率和成本要求相对较低。所提出的冲突/碰撞检测和冲突/碰撞解决规划算法是在局部级别框架中设计的,该框架是展开的、未倾斜的机身框架,其中本机静止在地图中心。路径规划方法旨在随着与本机距离的增加而实现多分辨率,以考虑自分离和避免碰撞的阈值。我们使用模拟 ADS-B 测量来演示和验证这种方法。
随着将无人机系统 (UAS) 整合到国家空域系统 (NAS) 的需求不断增长,需要新的程序和技术来确保空域安全运行并最大限度地减少 UAS 对当前空域用户的影响。目前,小型 UAS 在民用空域的使用受到限制,因为它们没有检测和避开其他飞机的能力。在本文中,我们将介绍一个框架,该框架由基于广播式自动相关监视 (ADS-B) 的传感器、航迹估计器、冲突/碰撞检测和降低碰撞风险的解决方案组成。ADS-B 提供长距离、全方位入侵者检测,对尺寸、重量、功率和成本要求相对较低。所提出的冲突/碰撞检测和冲突/碰撞解决规划算法是在局部级别框架中设计的,该框架是展开的、未倾斜的机身框架,其中本机静止在地图中心。路径规划方法设计为随着与本机距离的增加而具有多分辨率,以考虑自分离和避免碰撞的阈值。我们使用模拟 ADS-B 测量来演示和验证此方法。
符号 d tgt 到目标的欧几里德距离(斜距) DC 飞机与图像中心之间的地面半径 DX Y 轴截距与目标之间的地面距离 DY 飞机与 Y 轴截距之间的地面半径 DT 飞机与目标之间的地面半径 F b 机身框架连接到飞机 F c 相机框架连接到相机 F 中心 向心力 F n 北/东/下框架(惯性) g 地球重力加速度 h AGL 目标上方高度(地面以上) h des 所需轨道高度 KD φ 滚转内环微分增益 KD θ 俯仰内环微分增益 KD 外环微分增益 KI h 高度保持积分增益 KP h 高度保持比例增益 KP 外环外环控制器比例增益 KP ˙ ψ 转弯协调器比例增益 KP φ 滚转内环比例增益 KP θ 俯仰内环比例增益 LC 飞机与图像中心之间的斜距 LY 飞机与 Y 轴截距之间的斜距 LT飞机与目标之间的斜距 m 飞机质量 PE 位置向东 PN 位置向北 p 飞机倾斜率 q 飞机俯仰率 r 飞机航向(偏航)率 R 实际轨道半径 ˙ R 实际半径率 R des 所需轨道半径 S x 相机水平分辨率 S y 相机垂直分辨率 t 时间 VA 飞机空速 V CM / e 飞机相对于惯性系的速度 VW / e 风相对于惯性系的速度 V tgt / e 目标相对于惯性系的速度 W 飞机重量 X tgt 目标的 X 坐标 Y tgt 目标的 Y 坐标