作者:MD ENTERPRISE · 2022 年 — 美国国防部将大规模杀伤性武器定义为能够造成高级别破坏或造成大规模杀伤的化学、生物、放射或核武器 (CBRN)...
作者:S Hummel · 2020 · 被引用 11 — tion 3-40 被定义为能够造成高度破坏和/或造成大规模杀伤的化学、生物、放射和核武器 (CBRN) 或装置...
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2024年10月11日发布。 https://doi.org/10.1101/2024.10.08.615667 doi:Biorxiv Preprint
细胞因子参与免疫细胞的多种行为。全身给药细胞因子可以引发或增强某些癌症患者的抗肿瘤反应。不幸的是,细胞因子的外源添加带来了各种挑战,例如增加了细胞因子释放综合征(CRS)的风险。在船上,膜螺旋细胞因子不仅可以减轻外源性细胞因子的毒性风险,而且还可以克服其他局限性,包括短期半寿命和较差的组织渗透。但是,船上细胞因子的效力提高不得损害工程细胞的治疗窗口。这在介导肿瘤特异性杀伤的逻辑门(例如Lir-1)的产品中尤其重要。在这里,我们表明,在各种急性和长期肿瘤共培养分析中,在体内研究中,膜束缚的IL-12(MEM-IL-12)在不阻碍选择性的情况下增强了TMOD的效力。
随着降低成本,提高效率和最大化生产率的压力越来越大,组织越来越依赖人工智能(AI)。但是,使用AI自动化以前由人类执行的过程和任务自动化,通常会引起不确定性,引起员工中的担忧和灌输恐惧。3这种反应通常是由AI使员工工作过时,侵蚀其专业身份,破坏其工作常规并迫使他们重新杀害或重新杀伤的可能性引发的。不管AI系统使用基于规则还是机器学习方法,这些问题都会出现并且必须解决。因此,在使用或计划使用AI时,组织通常会面临道德挑战。一方面,他们试图通过降低成本来部署AI来帮助他们保持竞争力。因此,对失业的担忧;员工成本构成了整体成本结构的很大一部分,尤其是在服务领域。另一方面,大多数组织都非常关心员工,并希望为他们提供安全安全的工作环境。
摘要 背景 T 细胞介导疗法,例如嵌合抗原受体 T 细胞和 T 细胞双特异性抗体 (TCB),可有效地将 T 细胞重定向至肿瘤细胞,促进细胞毒性突触的形成并导致随后的肿瘤细胞杀死,该过程伴随着细胞因子的释放。尽管 TCB 在临床上具有良好的疗效,但其治疗与细胞因子释放综合征 (CRS) 的风险有关。本研究的目的是确定能够减轻细胞因子释放同时保留 T 细胞介导的肿瘤杀伤的小分子。方法通过筛选 52 种美国食品和药物管理局批准的激酶抑制剂库,以确定它们对 CD3 刺激后 T 细胞增殖和细胞因子释放的影响,我们确定了 mTOR、JAK 和 Src 激酶抑制剂是调节药理活性剂量下 TCB 介导的细胞因子释放的潜在候选药物。利用人外周血单核细胞杀伤靶细胞的体外模型,我们评估了 mTOR、JAK 和 Src 激酶抑制剂与 2+1 T 细胞双特异性抗体 (TCB) 包括 CEA-TCB 和 CD19-TCB 联合使用对 T 细胞活化、增殖和靶细胞杀伤的影响,通过流式细胞术测量,通过 Luminex 测量细胞因子释放。在无肿瘤干细胞人源化 NSG 小鼠中体内评估了 mTOR、JAK 和 Src 激酶抑制剂与 CD19-TCB 的组合在 B 细胞耗竭方面的效果,并在人源化 NSG 小鼠的淋巴瘤患者来源的异种移植 (PDX) 模型中评估了其抗肿瘤功效。结果 Src 抑制剂的作用与 mTOR 和 JAK 抑制剂不同,其体外抑制 CD19- TCB 诱导的肿瘤细胞裂解,而 mTOR 和 JAK 抑制剂主要影响 TCB 介导的细胞因子释放。重要的是,我们在体内证实了 Src、JAK 和 mTOR 抑制剂可显著降低 CD19-TCB 诱导的细胞因子释放。在人源化 NSG 小鼠中,使用 Src 抑制剂持续治疗可防止 CD19-TCB 介导的 B 细胞耗竭,而使用 mTOR 和 JAK 抑制剂则可保留 CD19-TCB 功效。最终,在淋巴瘤 PDX 模型中,使用 Src、mTOR 和 JAK 抑制剂进行短暂治疗可最大程度地抑制抗肿瘤功效。
持久性是肿瘤细胞的亚种群,可在抗癌治疗中促进复发,并在药物和免疫治疗后被鉴定出来,但通常被认为是不同的实体。药物和免疫细胞通常通过凋亡杀死,因此,我们检验了一种假设,即两种细胞基于线粒体凋亡敏感性的降低而存活,这将产生多疗法的抗性。我们观察到IPC获得了对多种药物和放射疗法的敏感性降低。同样,DTPS对多种药物和放射疗法的敏感性降低,包括对T细胞杀伤的敏感性降低。IPC和DTP对线粒体凋亡的敏感性较低。 一些IPC下调抗原和上调的PD-L1。 在不采用这些机制的IPC中,对凋亡的敏感性降低了。 抑制持久性抗凋亡依赖性的依赖性增加了对化学疗法或CAR T治疗的敏感性。 这些结果表明,持久者的共同机制为越野抗性提供了解释。IPC和DTP对线粒体凋亡的敏感性较低。一些IPC下调抗原和上调的PD-L1。,对凋亡的敏感性降低了。抑制持久性抗凋亡依赖性的依赖性增加了对化学疗法或CAR T治疗的敏感性。 这些结果表明,持久者的共同机制为越野抗性提供了解释。抑制持久性抗凋亡依赖性的依赖性增加了对化学疗法或CAR T治疗的敏感性。这些结果表明,持久者的共同机制为越野抗性提供了解释。
自然杀伤 (NK) 细胞是先天免疫系统的细胞成分,可以识别和抑制癌细胞的增殖。NK 细胞可以通过直接裂解、分泌穿孔素和颗粒酶或通过抗体依赖性细胞介导的细胞毒性 (ADCC) 来消除癌细胞。ADCC 涉及 NK 细胞上的 Fc 伽马受体 IIIa (CD16) 与已经与癌细胞结合的抗体的恒定区结合。癌细胞使用多种机制来逃避 NK 细胞的抗肿瘤活性,包括抑制性细胞因子的积累、免疫抑制细胞(如髓源性抑制细胞 (MDSC) 和调节性 T 细胞 (Treg))的募集和扩增、NK 细胞受体的配体的调节。已经开发了几种策略来增强 NK 细胞的抗肿瘤活性,目的是克服癌细胞对 NK 细胞的抵抗力。改造和增强 NK 细胞毒性的三种主要策略包括使用调节性细胞因子增强 NK 细胞、过继性 NK 细胞疗法以及使用改造的 NK 细胞来增强基于抗体的免疫疗法。尽管前两种策略提高了基于 NK 细胞的疗法的疗效,但仍存在一些局限性,包括免疫相关不良事件、诱导免疫抑制细胞以及进一步产生对 NK 细胞杀伤的癌症抵抗力。克服这些问题的一种策略是结合介导 ADCC 的单克隆抗体 (mAb) 和具有增强抗癌活性的改造 NK 细胞。使用具有 ADCC 活性的 mAb 的优势在于它们可以激活 NK 细胞,但也有利于免疫效应细胞在肿瘤微环境 (TME) 中的积累。多项临床试验报告称,与单独使用 mAb 相比,将改造的 NK 细胞与具有 ADCC 活性的 mAb 相结合可以产生更好的临床反应。下一代临床试验采用工程化 NK 细胞和对 NK 细胞上表达的 CD16 具有更高亲和力的 mAb,将为癌症患者提供更有效、更高质量的治疗。
摘要 背景 肿瘤微环境 (TME) 中的癌相关成纤维细胞 (CAF) 导致自然杀伤 (NK) 细胞功能受损,而自然杀伤 (NK) 细胞已成为一种有前途的治疗方式。TME 内的 CAF 和 NK 细胞之间的相互作用对免疫反应具有主要的抑制作用,表明 CAF 靶向疗法是有效 NK 介导的癌症杀伤的潜在靶点。 方法 为了克服 CAF 诱导的 NK 功能障碍,我们选择了抗纤维化药物尼达尼布进行协同治疗。为了评估协同治疗效果,我们建立了体外 3D Capan2/患者来源的 CAF 球体模型或体内混合 Capan2/CAF 肿瘤异种移植模型。通过体外实验揭示了 NK 介导的与尼达尼布协同治疗联合的分子机制。随后评估了体内治疗组合功效。此外,通过免疫组织化学方法测量患者来源的肿瘤切片中靶蛋白的表达评分。结果尼达尼布阻断了血小板衍生的生长因子受体 β (PDGFR β ) 信号通路并减少了 CAF 的激活和生长,从而显著降低了 CAF 分泌的 IL-6。此外,在 CAF/肿瘤球体或异种移植模型中,尼达尼布的联合给药提高了间皮素 (MSLN) 靶向嵌合抗原受体-NK 介导的肿瘤杀伤能力。协同组合导致体内强烈的 NK 浸润。尼达尼布单独使用没有效果,而阻断 IL-6 反式信号传导可改善 NK 细胞的功能。MSLN 表达和 PDGFR β + -CAF 群体面积(潜在的预后/治疗标志物)的组合与较差的临床结果相关。结论我们针对含有 PDGFR β + -CAF 的胰腺癌的策略可以改善胰腺导管腺癌的治疗。
抽象背景有雌激素受体(ER)+,孕酮受体(PR)+和HER2+乳腺癌的高效治疗策略。但是,对于被诊断为三阴性乳腺癌的妇女中的10% - 15%的靶向治疗策略有限。在这里,我们假设靶向药物的ER会诱导表型变化,以使乳腺肿瘤细胞对免疫介导的杀戮敏感,无论其ER状态如何。进行了实时细胞分析,流式细胞仪,QRT-PCR,蛋白质印迹和多重RNA分析,以表征ER+和ER-乳腺癌细胞,并询问ER靶向药物的表型效应。通过他莫昔芬代谢产物4-羟基莫昔芬(4-OHT)和输卵剂的乳腺癌细胞对免疫细胞杀死的敏感性,是通过体外健康抑制天然杀伤细胞111释放内杀死测定方法来确定的。进行了一项合成性肿瘤研究,以在体内验证这些发现。用他莫昔芬代谢产物4- OHT或Fulvestrant进行预处理的结果导致ER+和ER-乳腺癌细胞的自然杀伤(NK)介导的细胞裂解增加。通过4-OHT处理的ER+和ER-细胞的多重RNA分析分析,我们确定了凋亡和死亡受体信号传导途径的激活增加,并确定了G蛋白偶联受体的雌激素(GPR30)参与度是一种假定的机制,是一种用于免疫开发的机制。使用特定的GPR30激动剂G-1,我们证明了靶向GPR30信号传导的靶向激活导致NK细胞杀死增加。此外,我们表明GPR30的敲低抑制了4-OHT和拟驱动介导的NK细胞杀伤的增加,这表明这取决于GPR30的表达。此外,我们证明了这种机制在4-OHT耐药的MCF7细胞系中保持活跃,表明即使在具有抗ER+肿瘤的患者群体中,对他莫昔芬的细胞毒性作用有抗性,4-OHT治疗也会使它们敏感它们对免疫介导的杀害。此外,我们发现肿瘤细胞的过饱和预处理与IL-15超级飞机N-803治疗NK细胞的处理协同,并使肿瘤细胞敏感到靶向高亲和力天然杀伤剂(T-Hank)细胞的编程死亡凸起1(PD-L1)。最后,我们证明了荧光动物和N-803的组合有效地在体内三阴性乳腺癌。