所有航空 LiDAR 系统的核心都是用于直接地理参考的精确定位系统 AEROcontrol。使用不同的免出口 IMU,AEROcontrol 可以精确测量传感器或传感器星座的位置和飞行姿态,频率高达 600 Hz。该系统为所有集成传感器提供一个操作员界面。与 AEROoffice 结合使用,可提供简化的数据工作流程和内置杠杆臂校正,以提高所有航空测绘应用的生产率。特点:• 一个紧凑的系统,多种应用(为机载、陆地、水面和铁路应用实施特殊的前向/后向卡尔曼滤波算法)• 544 通道 GPS、GLONASS、BEIDOU、GALILEO、IRNSS、QZSS 支持,支持 TERRASTAR • 基于测量级 FOG 和 MEMS 的 IMU,全部免出口 • IGI 精确调平 - 基于 IMU 的精确稳定支架控制
提供机载传感器数据的直接地理参考 Leica IPAS20 通过严格的卡尔曼滤波器将精确的 GNSS 解决方案与原始 IMU 测量相结合。Leica IPAS20 提供的 IMU 基于光纤、环形激光或干调陀螺仪技术。每种 IMU 类型都以高数据速率(从 200Hz 到 500Hz)测量精确的速度增量和角度增量。Leica IPAS20 将 IMU 测量的出色短期精度与 GPS 解决方案的长期稳定性相结合,在整个任务期间产生高度精确的位置、速度和方向。卡尔曼滤波器将同时估计来自加速度计和陀螺仪的误差。Leica IPAS20 还可以估计 GNSS 天线和传感器参考中心之间的杠杆臂。估计的实时解决方案(包括位置、速度和滚动、俯仰和航向)可用于飞行管理,也可用于控制其他传感器。滚动、俯仰和航向可以作为稳定支架(如 Leica PAV30)的数字信号输出,以提高支架的精度。或者,它们可以作为模拟信号输出以控制其他传感器功能,例如 Leica ALS50 激光扫描仪的滚动补偿。灵活且可扩展的机载系统 Leica IPAS20 系统由 Leica IPAS20 控制单元和集成的 GNSS 接收板、GNSS 天线、IMU 和软件组成。该系统专为所有类型的机载传感器而设计:
关键词:倾斜影像、相机校准、3D 城市模型、多传感器、视轴校准 摘要:除了创建虚拟动画 3D 城市模型、国土安全和城市规划分析外,准确确定倾斜影像中的几何特征也是当今的一项重要任务。由于单幅图像数量巨大,控制点的减少迫使人们使用直接参考设备。这需要精确的相机校准和额外的调整程序。本文旨在展示各种校准步骤的工作流程,并将展示使用最终 3D 城市模型进行校准飞行的示例。与大多数其他软件不同,倾斜相机不是作为与天底传感器共同配准的传感器使用,所有相机图像都作为单个预定向数据进入 AT 过程。这样可以实现更好的后校准,以便检测单个相机校准中的变化和其他机械效应。所示的传感器(倾斜成像仪)基于 5 台 Phase One 相机,其中天底相机配备 50 毫米镜头,像素为 80 MPIX,而倾斜相机使用 80 毫米镜头以 50 MPix 捕捉图像。相机牢固地安装在外壳内,以防止物理和热变形。传感器头还承载着一个连接到 POS AV GNSS 接收器的 IMU。传感器由陀螺仪支架稳定,陀螺仪支架可产生浮动天线 -IMU 杠杆臂。它们必须与原始 GNSS-IMU 数据一起注册。相机校准程序基于一次特殊校准飞行执行,共拍摄了 5 台相机的 351 张照片并记录了 GPS/IMU 数据。这项特定任务设计在两个不同的高度,每个飞行高度都有额外的十字线。每个曝光位置的五张图像没有重叠,但在区块中有很多重叠,导致每个点的测量次数高达 200 次。每张照片上平均有 110 个分布均匀的测量点,这对于相机校准来说是一个令人满意的数字。第一步,借助天底相机和 GPS/IMU 数据,计算出初始方向校正和径向校正。通过这种方法,整个项目只需一步即可计算和校准。在迭代过程中,分别打开摄像头的径向和切向参数,然后检查相机常数和主点位置并最终进行校准。除此之外,孔侧校准既可以基于天底相机及其偏移量进行,也可以独立于每个相机进行,与其他相机无关。无论如何,这必须在完整的任务中执行,以获得单个摄像头之间的稳定性。确定节点到 IMU 中心的杠杆臂需要比单个相机更加谨慎,特别是由于倾斜角度较大。准备好所有这些步骤后,您将获得一个高精度传感器,该传感器能够完全自动提取数据,并快速更新现有数据。然后可以在完全 3D 环境中频繁监测城市动态。
图 1 基于 SimGEN 的 GSS9000 GNSS 仿真系统示例 .............................................................................. 8 图 2 GSS7000 GNSS 仿真系统示例 .............................................................................................. 8 图 3 SimGEN 图形用户界面示例 ...................................................................................................... 9 图 4 场景树 ...................................................................................................................................... 10 图 5 车辆(天线)位置、运动和接收信号显示 ............................................................................. 11 图 6 卫星地面轨迹和天空图 ............................................................................................................. 11 图 7 典型的源编辑器 ................................................................................................................ 12 图 8 典型的星座编辑器 – 显示 GPS ............................................................................................. 13 图 9 卫星地面轨迹 ............................................................................................................................. 14 图 10 信号内容定义 – 显示 GPS ............................................................................................. 15 图 11 大气模型系数 ................................................................................................................ 16 图 12 定义车辆性能范围的个性编辑器 ................................................................................. 18 图13 赛道编辑器 ................................................................................................................................ 19 图 14 圆周运动编辑器 ...................................................................................................................... 20 图 15 飞机运动命令编辑器 ................................................................................................................ 21 图 16 航天器位置编辑器 ................................................................................................................ 24 图 17 地形遮挡编辑器 ...................................................................................................................... 26 图 18 天线模式编辑器 ...................................................................................................................... 27 图 19 天线杠杆臂 ............................................................................................................................. 27 图 20 Sim3D™ 环境表示 ................................................................................................................ 28 图 21 统计多径类别掩模编辑器 ............................................................................................................. 29 图 22 GTx 的功率与距离建模 ..................................................................................................... 31 图 23 快速查看选择和记录 ............................................................................................................. 32 图 24 数据流 ............................................................................................................................. 33 图 25 信号类型选择 ............................................................................................................................. 34 图 26 GBAS 消息类型 1 和 2 编辑器示例 ...................................................................................... 38
通过茎/接头区域控制微管相关蛋白的含力特性:来自NDC80复合体Ilya B. Kovalenko的见解俄罗斯莫斯科的莫斯科州立大学Lomonosov;中国深圳市MSU-BIT大学B深圳; C俄罗斯莫斯科物理学药理论理论问题中心。*应将通信发送至p.s.o和n.b.g(orekhov_p@smbu.edu.cn,ngudimch@gmail.com)在机械载荷下许多微管相关蛋白(MAPS)功能。在其中,运动蛋白和被动耦合器将微管与其他细胞骨骼细丝,膜结构和不同的支架联系起来,以实现细胞形状的变化,运动和其他重要过程。NDC80的键动力学复合物将力从微管拆卸到细胞分裂期间的染色体运动。最近,与沿正端方向拉动相比,当朝着微管的负末端拉动时,该复合物已被证明可以更容易从微管脱离。在这里,我们使用了粗粒的分子动力学和布朗动力学模拟来解释方向载荷对从微管的NDC80复合物解开的不对称效应,然后将我们的发现概括为其他地图。我们发现,由朝向微管的正端倾斜的NDC80的僵硬茎产生的杠杆臂对于这种复合物的不对称解开至关重要,类似于Dynein的络合物。,EB蛋白,微管交联PRC1和驱动蛋白预计缺乏明显的解体不对称性,这是由于它们几乎垂直于微管壁上的垂直锚固,或者是由于其接头区域的较高灵活性与微管结构域紧密相关。因此,我们的研究突出了地图的一些设计原理,并解释了它们的远端部分如何赋予,调节或消除解开外部载荷方向的依赖性。此信息加深了我们对载荷特性和各种图的功能的理解,并可能指导具有预定义机械特性的合成蛋白系统的设计。
摘要 高分相机(GFXJ)是我国第一款自主研发的机载三线阵CCD相机,设计飞行高度2000m时,对地面三维点的GSD为8cm、平面精度为0.5m、高程精度为0.28m,满足我国1:1000比例尺测绘要求。但GFXJ原有的直接定位精度在平面方向约为4m,高程方向约为6m。为满足地面三维点精度要求,提高GFXJ直接定位精度,本文对GFXJ几何定标进行了深入研究。本次几何标定主要包括两部分:GNSS杆臂与IMU杆轴失准标定、相机镜头与CCD线畸变标定。首先,简单介绍GFXJ相机的成像特性。然后,建立GFXJ相机的GNSS杆臂与IMU杆轴失准标定模型。接下来,建立基于CCD视角的GFXJ镜头与CCD线畸变分段自标定模型。随后,提出迭代两步标定方案进行几何标定。最后,利用在黑龙江省松山遥感综合场和鹤岗地区获取的多个飞行区段进行实验。通过标定实验,获得了GNSS杆臂和IMU视轴失准的几何标定值。为前向、下视和后向线阵独立生成了可靠的CAM文件。实验表明,提出的GNSS杆臂和IMU视轴失准标定模型和分段自标定模型对GFXJ相机具有良好的适用性和有效性。提出的两步标定方案可以显著提高GFXJ相机的几何定位精度。GFXJ原始直接地理定位精度在平面方向约为4 m,在高程方向约为6 m。平面精度约为0.2 m,高程精度小于0.28 m。此外,本文建立的定标模型及定标方案可为其他机载线阵CCD相机的定标研究提供参考。利用GNSS杠杆臂和IMU视轴失准校准值以及CAM文件,GFXJ相机的定位精度可以在仅使用几个地面控制点进行空中三角测量后满足3D点精度要求和2000 m飞行高度1:1000的测绘精度要求。
摘要 - 在国家航空航天及空间管理局(NASA)兰利研究中心(LARC)和马萨诸塞州技术研究所(MIT)太空资源研讨会上进行了调查,可部署空间范围内的遗产,以支持在Nasa Atae Athemis Attemis运动中垂直部署的潜力。本文报告了新的设计开发结果 - 在NASA 2020年2020年大概念挑战的原始演讲之后,对于16.5米高的,紧凑的,紧凑的自我部署的复合塔,旨在支持附近的机器人资产或人类对月球永久阴影地区的探索。可能的应用程序包括垂直太阳能数组和提供科学或工程有效载荷的高度视线,以支持附近的目标在感兴趣的领域运行,这可能很难到达。有用的高架有效载荷包括无线电中继器,遥感和成像,导航和电动束光系统。然而,尽管这些轻巧的滚动臂的高度与质量比具有出色的高度,但它们通常在部署时表现出轴向曲率,从而导致尖端质量相对于塔底座的尖端质量明显的横向侧重负载偏转。这种静态挠度随着塔的高度和尖端质量而增加,不仅限制了塔传递的值,而且危害了其完整性。要开发具有竞争性,轻巧的可部署复合动臂塔,将需要在部署期间和之后纠正静态偏转的能力。值得注意的是,自然偏转几乎完全正常地与动臂横截面的接缝完全正常,但是自然的繁荣尖端横向偏转在本文中,将为MIT / LARC自我培养的复合动型Lunar塔提供一个可部署的Guy电线稳定系统,该综合动臂Lunar塔提供实时测量,在部署期间(部署)和被动(DEPLOYMENT)保持紧张局势,并可以通过启发范围进行测试和替代稳定性船只,并可以用作可重新配置的稳定稳定性的船只,并可以作为可重新配置的平台。使用校准的摄影测量系统,记录了不同配置的动臂相对于不同部署高度处的动臂基础的自然侧向偏转。通过实时测量值,发现张紧的家伙电线可以显着减少可部署的复合动臂在死负荷下的静态尖端偏转,并且可以在一分钟的不到一分钟内抑制动态振荡。还发现,控制权是最需要的,即最接近杠杆臂,最接近偏转方向。对于至少11 m的塔高度,散布器长度至少为60厘米,所有三个臂的差分张力的解决方案均存在,并且原则上提供了足够的控制权限,以纠正或显着减少动臂尖端的偏转。