在人口增长和气候变化的背景下,消费量增加和农作物产量下降威胁着粮食安全。为了减轻这些威胁,可以采用植物基因工程来创造产量和营养价值更高、能够抵抗疾病和干旱等生物和非生物胁迫的作物。尽管基因组编辑领域最近取得了进展,但大多数植物物种仍然难以进行基因工程,因为植物细胞壁坚硬,尺寸排阻严格,这对生物分子向植物细胞的有效运输提出了挑战。目前将 DNA 输送到植物中的常用方法限制了可转化植物物种的范围,导致转基因整合不受控制,因此需要对编辑植物进行监管审查,将其视为转基因生物 (GMO),这个过程漫长而昂贵。因此,开发一种无致病性、非整合性、物种独立的输送工具将极大地推动农业生物技术的发展。在本次研讨会上,我将介绍一种纳米材料平台的开发,该平台可以高效地将基因输送到模型和农业相关作物植物中,无需机械辅助,以无毒、无整合的方式;这些特性的组合是现有植物转化方法无法实现的。我将讨论如何对单壁碳纳米管进行化学修饰,以装载和递送 DNA 到植物细胞中,从而在烟草、芝麻菜、小麦和棉花等各种植物物种中表达功能性蛋白质。在成熟植物中实现了质粒 DNA 的有效递送和瞬时表达,特别是没有将转基因整合到植物基因组中,这一特性可以减轻对转基因植物的监管监督。本次研讨会还阐明了纳米粒子穿过植物细胞壁的基本原理。我将讨论纳米粒子的物理化学特性(大小、形状、纵横比和硬度)对植物细胞吸收的影响,我们利用 DNA 纳米结构的易编程性系统地研究了这些影响。重要的是,确定最大植物细胞吸收的最佳纳米材料参数可以合理设计纳米材料。这些发展展示了纳米材料在解决植物基因工程的主要瓶颈方面的独特能力,以实现可持续的粮食安全未来。
第1阶段的重点是对大阿德莱德地区计划讨论文件的出版,吸收和理解(讨论文件)。讨论文件概述了委员会在2050年及以后建立对大阿德莱德的愿景时的关键领域。它包含重要的预测,趋势和增长分析,在计划该地区的未来时必须考虑。这是一份强大的基于证据的文件,启发了与所有利益相关者以及投资塑造大阿德莱德未来的对话。
摘要 本文介绍了一种非平衡马赫-曾德干涉仪 (MZI) 固有的干涉特性,该干涉仪通过精密制造技术在绝缘体上硅平台上实现。研究深入探讨了自由光谱范围 (FSR) 与非平衡 MZI 各种长度之间的复杂关系。值得注意的是,模拟结果与实验结果的比较显示出了惊人的一致性。 关键词:马赫-曾德干涉仪、光子学、绝缘体上硅、波导 1. 简介 硅光子器件因其吸引人的特性而越来越受欢迎。小尺寸、大折射率对比度和 CMOS 兼容性是硅光子器件的特性之一,这些特性使其成为电信、生物医学等多个行业的首选器件[1]。马赫-曾德干涉仪 (MZI) 是最广泛使用的硅光子器件组件之一。在硅平台上实现的马赫-曾德尔干涉仪是各种应用的关键元件,从电信(用于光子波导开关和光子调制器)到传感和信号处理 [2]、[3]、[4]。MZI 的实用性源于其干涉特性,这是通过在 MZI 的两个臂之间产生相对相移来实现的。这种相移可以通过使用移相器或使 MZI 的两个臂的光路长度不相等来实现。MZI 的两个臂不相等的 MZI 配置称为不平衡 MZI。在本文中,我们展示了一种不平衡 MZI 设计,我们对其进行了建模、模拟和随后的制造。我们研究了几种不平衡 MZI 设计,并分析了这些设备的模拟和实验传输特性。我们阐明了波导建模的过程,并进行了分析以补偿制造变化,并详细介绍了一些数据分析。 2. 材料与方法 2.1 理论 马赫-曾德干涉仪 (MZI) 包括一个分束器和一个光束组合器,它们通过一对波导相互连接,如图 1 所示。MZI 配置包括分束器将波导输入端 (E i ) 的入射光分成波导的臂或分支。随后,光在输出端重新组合成光束
母乳低聚糖对儿童健康的影响 / Mellyssa Tenório Neves Ferreira、Victória Palmeira Celestino Oliveira。 – 2021. 35 页: 患病的。主管:莫妮卡·洛佩斯·德阿松桑。
槲寄生在法国赤松林中发生率的上升是阿尔卑斯山赤松林保护和可持续性面临的主要问题之一。与天然林相比,人工林更容易受到生物入侵。研究区域覆盖着针叶林(低海拔地区主要是法国赤松),法国西南部阿尔卑斯山的一部分黑森林受到半寄生虫槲寄生的严重影响。由于槲寄生的发生,研究区域的法国赤松树枝肿胀、树体弯曲;树木死亡率惊人。为了管理和尽量减少生物入侵,检测和绘图在森林保护中起着关键作用。通过遥感技术检测和绘制生物入侵地图是研究人员要克服的挑战。高分辨率 (VHR) 卫星图像和航空图像的进步以及遥感和 GIS 技术的应用,已在森林健康状况的检测、绘图和监测方面显示出良好的效果。在本研究中,数字航空正射影像(分辨率 15 厘米)和 VHR 卫星图像 WorldView-2(全色 0.5m 和多光谱 2m)用于通过基于像素的最大似然分类器检测和绘制欧洲松林中槲寄生的存在。在 WorldView-2 光学影像上,成功绘制了欧洲松林的分布,精度较高(96%),kappa 系数为 0.84。存在槲寄生的欧洲赤松在所有波段的光谱反射率都较低,但 WorldView-2 的 NIR1、NIR2 和红边对槲寄生的区分能力更强。同样,植被指数 NDVI 85(红光和 NIR2 的波段组合)也有区分槲寄生的潜力。此外,结果表明,槲寄生与海拔呈负相关和显著相关(r=-0.5135;p<0.01),而与欧洲赤松的 DBH 呈显著正相关(r=0.52;p<0.01)。通过使用海拔和 DBH 建立了弱但统计显著的多元回归和逻辑回归,以模拟欧洲赤松树中槲寄生的发生率。通过应用基于像素的最大似然算法对松林中的槲寄生进行检测,在 WorldView-2 图像中实现了总体分类准确率 (86%) 和 kappa 系数 (0.52)。2m 分辨率 WV-2 与 0.15cm 分辨率正射影像分类输出的比较表明,空间分辨率较低但光谱分辨率较高的 WV-2 影像的分类精度较高(86%)。这项研究揭示了高分辨率光学影像在检测和绘制树木侵染地图方面具有巨大潜力。检测和绘制此类生物入侵地图可为更好地管理森林提供有用信息。关键词:检测和绘图、欧洲赤松、槲寄生、光学影像、生物入侵
中毒性表皮坏死松解症 (TEN) 和 Stevens-Johnson 综合征 (SJS) 具有共同的生物学机制,可以看作是一个连续体,其中 TEN 处于严重性和致死性的极端位置。普瑞巴林是一种 γ-氨基丁酸 (GABA) 类似物,可与中枢神经系统中的辅助电压依赖性钙通道亚基结合。它于 2004 年首次在欧盟获得批准,目前以大量商标名称上市。普瑞巴林适用于治疗成人患者的中枢和周围神经性疼痛、癫痫(作为伴有或不伴有继发性全身性发作的部分危机的辅助治疗)以及广泛性焦虑症。SJS 于 2007 年被列入含有普瑞巴林的原始药品的 SmPC 中。从那时起,已经报告了严重皮肤不良反应 (SCAR) 病例,例如 TEN,包括危及生命和致命的情况。 TEN 是一种真正的医疗紧急情况;因此,应立即停用疑似药物并开始治疗。早期诊断对于预后至关重要。在 2022 年 1 月完成的欧洲范围的安全信号评估中,审查了临床前和临床研究、文献和欧洲药物不良反应数据库 EudraVigilance 的所有可用数据。此外,还对上市后的 TEN、SJS/TEN 和类似反应病例进行了累积分析。鉴于 TEN 的病理生理机制和临床特征,TEN 是一种比之前列出的 SJS 更严重的 SCAR,因此得出结论,需要更新含普瑞巴林药品的信息。欧洲药品管理局已决定修改 SmPC 文本以包括以下内容: