• 50 毫米至 12 米的卷筒片材或切割片材 • 75 毫米至 6 米的管材 • 最大开口为 6 米的扁平和角撑袋 • 贴体、拉伸和收缩膜 • 弹性遮蔽袋和遮蔽套 • 束口袋和气泡膜 • 普通或彩色薄膜,印有您的公司徽标。
版权所有 ©2022 Sustainalytics。保留所有权利。本出版物包含由 Sustainalytics 开发的信息 www.sustainalytics.com/legal-disclaimers。Gränges 对任何 MSCI ESG research llc 或其附属公司(“MSCI”)数据的使用,以及本文对 MSCI 徽标、商标、服务标志或指数名称的使用,并不构成 MSCI 对 Gränges 的赞助、认可、推荐或推广。MSCI 服务和数据是 MSCI 或其信息提供商的财产,按“原样”提供且不提供任何担保。MSCI 名称和徽标是 MSCI 的商标或服务标志。
9) K. Mitsukura、M. Toba、K. Urashima、Y. Ejiri、K. Iwashita、T. Minegishi、K. Kurafuchi,“用于有机中介层的超精细和高可靠性沟槽布线工艺提案。”国际微电子组装与封装协会 (IMAPS) 2016。10) K. Mitsukura、S. Abe、M. Toba、T. Minegishi、K. Kurafuchi,“使用新设计的绝缘阻挡膜实现 1/1 μm 线/间距的高可靠性 Cu 布线层。”国际微电子组装与封装协会 (IMAPS) 2017。11) M. Minami、D. Yamanaka、M. Toba、S.H.Tsai, S. Katoh, K. Mitsukura,“制造具有精细 Cu 布线和出色电气可靠性的两种面板级中介层” 2023 年电子元件和技术会议 (ECTC)。12) S.H.Jin, W.C. Do, J.S.Jeong, H.G.Cha, Y.K.Jeong, J.Y.Khim,“具有细间距嵌入式走线 RDL 的 S-SWIFT” 2022 年电子元件和技术会议 (ECTC)。13) AH 系列 | 产品 | Resonac
此处显示的数据基于截至 2024 年 1 月的技术信息和可用日期,不旨在保证质量。内容可能会根据新发现进行必要的修订。此处的所有演示文稿:机密
具体来说,2003 年,全球生产能力为 750 兆瓦,而 2019 年,光伏组件产量约为 130 吉瓦。因此,在短短 17 年内,产量增长了 150 多倍,我们即将进入太瓦时代。事实上,最新数据显示,2021 年全球产量达到 175 吉瓦 - 证明了这一持续趋势。两三年后,全球光伏安装量将超过 1 兆字节。中国在安装量方面处于领先地位,其次是北美,北美在 2021 年超过了欧洲(现在是第三大贡献者),其次是印度和日本。 2020 年,这些国家合计占全球总装机量的 88%4。2021 年的数据显示,排名前 10 位的国家(澳大利亚、中国、印度、日本、韩国、德国、西班牙、法国、巴西和美国)占全球年度光伏市场的 74% 左右,与 2020 年相比略有下降。5
摘要 钛合金Ti6Al4V具有强度高、耐腐蚀性能好等优点,被广泛应用于医疗、汽车、航空航天等行业。另一方面,增材制造(AM)技术可以给予产品设计的自由度。为了推广AMed产品,需要将AMed与锻造产品连接起来,了解接头特性非常重要。本研究在氩气保护下用光纤激光器对Ti6Al4V板进行对接焊,并实验研究了激光焊接锻造/锻造、AMed/AMed、AMed/锻造Ti6Al4V板的接头特性。AMed板的抗拉强度高于锻造板,但AMed板的伸长率较小,这是因为AM工艺中AMed板在激光辐照过程中由于快速冷却而产生α'马氏体。然后,AMed/AMed板的激光焊接接头具有较高的抗拉强度,但伸长率小于锻造/锻造板。强化/锻造钢板的焊接接头表现出良好的焊接状态,因为较小的热输入导致锻造钢板和强化钢板之间形成较小且硬度较高的焊道。
锂电池有任何特殊的回收要求吗?有任何报废处理计划吗?对环境有影响吗?全球都有锂离子回收基础设施,我们的供应商(符合所有法规)也可以管理。但是,处理由机器所有者负责。无需浇水,锂离子电池组也不会出现电解液“泄漏”,比其他电池更环保。
{ Times New Roman,11 分 } 激光折弯是通过激光束照射板材表面来弯曲板材的工艺 [1]。这是一种热机械工艺,适用于快速成型和变形低延展性材料。该工艺在航空航天、造船、微电子、汽车工业等领域具有多种潜在应用。它是一种快速、灵活且低成本的金属成型工艺,可以提高这些行业的竞争力。该工艺还提供了很大的灵活性,因为许多其他应用(如焊接、钎焊和硬化)可以通过同一设备执行。该领域已经发表了多篇理论和实验论文,其中更多的研究集中在激光束直线弯曲上。这些工作的最终目标是了解该过程的物理原理并建立各种预测弯曲角度的模型。本文简要回顾了这些工作以及用于分析的不同方法。基于此,本文利用 ABAQUS 程序包进行有限元分析,预测特定钢板材料的温度分布和弯曲角度,并将结果与作者开发的简单分析模型进行比较。从文献中的实验结果可以确定,所提出的理论模型可以相当好地预测弯曲角度。还表明,所开发的模型可用于快速估算激光弯曲过程中材料的屈服应力。
摘要 在各种增材制造 (AM) 技术中,线材和电弧增材制造 (WAAM) 是最适合生产大型金属部件的技术之一,同时也表明其在建筑领域具有应用潜力。目前已有多项研究致力于钢和钛合金的 WAAM,最近,人们也在探索 WAAM 在铝合金中的应用。本文介绍了使用商用 ER 5183 铝焊丝生产的 WAAM 板的微观结构和机械特性。目的是评估平面元件在拉伸应力下可能出现的各向异性行为,考虑相对于沉积层的三个不同提取方向:纵向 (L)、横向 (T) 和对角线 (D)。进行了成分、形态、微观结构和断口分析,以将 WAAM 引起的特定微观结构特征与拉伸性能联系起来。发现试样取向具有各向异性行为,T 试样的强度和延展性最低。造成这一现象的原因在于,微观结构不连续性在拉伸方向上存在不利的方向。拉伸试验结果还表明,与传统的 AA5083-O 板材相比,其整体机械性能良好,表明未来可用于实现非常复杂的几何形状和优化形状,以实现轻量化结构应用。