空间分布的基因活动如何转化为细胞极性和生长模式,从而产生多种形式的多细胞真核生物,这一点仍不清楚。在这里,我们表明,转录因子杯形子叶 1 (CUC1) 的物种特异性表达是两种相关植物物种之间叶形差异的关键决定因素。通过结合延时成像、遗传学和建模,我们发现 CUC1 充当极性开关。该开关通过转录激活影响生长素转运蛋白极性的激酶来调节叶形,生长素转运蛋白通过与激素生长素的反馈来模式化叶片生长。因此,我们发现了一种机制,通过将物种特异性转录因子表达与细胞水平极性和生长联系起来,跨越生物尺度,形成不同的叶形。
我们研究了一种在原子薄的半导体中诱导超导性的机制,激子介导电子之间的有效吸引力。我们的模型包括超出声子介导的超导性范式的相互作用效应,并连接到玻色和费米极性的良好限制。通过考虑TRIONS的强耦合物理,我们发现有效的电子相互作用会形成强频率和动量依赖性,并伴随着经历了新兴的BCS-BEC交叉的系统,从弱绑定的S-波库珀对Bipolarons的超浮雕。即使在强耦合时,双丙酸也相对较轻,从而导致临界温度占费米温度的10%。这使二维材料的异质结构有望在通过电子掺杂和Trion结合能设置的高临界温度下实现超导性。
我们提供了一个基于经典电磁学的理论框架,以描述Fabry-Pérot腔的光学特性,并用多层和线性手性材料填充。我们发现了转移 - 矩阵,散射矩阵和绿色功能方法之间的正式联系,以计算依赖极化的光学传播和空腔模型的圆形二色性信号。我们展示了诸如洛伦兹的互惠和时间反向对称性之类的一般对称性如何限制此类腔的建模。我们采用这种方法来通过数值和分析研究,由金属或螺旋性的介电光子晶体镜制成的各种Fabry-Pérot腔的特性。在后一种情况下,我们根据在镜面界面上反映的电磁波的部分螺旋性保存分析了手性腔极性的发作。我们的方法与设计创新的Fabry-Pérot腔有关手性传感和探测腔体模化的立体化学相关。
在可极化的材料中,电子电荷载体与周围离子相互作用,从而导致准粒子行为。所产生的极性子在许多材料特性中起着核心作用,包括电运,光,表面反应性和磁敏感,以及极性通过这些宏观特征进行间接研究。在这里,非接触原子力显微镜(NC-AFM)用于在单一准粒子极限下以Fe 2 O 3的形式图像极性图像。Kelvin探针力显微镜(KPFM)和动力学蒙特卡洛(KMC)模拟的组合表明,可以通过Ti掺杂来显着增加电子极性的迁移率。密度功能理论(DFT)计算表明,从极化自由载体状态从极化自由载体状态的过渡可以在电子极性迁移中起关键作用。相比之下,孔极化物的流动性明显较小,并且通过捕获中心进一步阻碍了它们的跳跃。
超声波电源(发电机)将 50/60 Hz 电压转换为高频电能。此交流电压施加到转换器内的圆盘状陶瓷压电晶体上,使它们随着极性的每次变化而膨胀和收缩。这些高频纵向机械振动被探头(喇叭)放大,并以交替的膨胀和压缩声压波的形式传输到液体中。压力波动导致液体分子内聚力分解,将液体拉开并产生数百万个微气泡(空腔),这些气泡在低压阶段膨胀,在高压阶段剧烈内爆。随着气泡破裂,内爆点会产生数百万个微观冲击波、微喷射流、涡流和极端压力和温度,并传播到周围介质。尽管这种称为空化的现象仅持续几微秒,并且每个气泡释放的能量很小,但内爆空腔产生的累积能量极高,是超声波槽中产生能量的许多倍。
抽象实现具有窄带发射和高颜色纯度的高发光有机发光设备(OLEDS)在各种光电领域都很重要。激光显示由于其最终的视觉体验而在下一代展示技术中表现出了出色的优势,但这仍然是一个巨大的挑战。在这里,我们开发了一种新型的基于OLED的有机单晶。通过将有机激子状态与光学微腔内强烈耦合,我们从极性的OLED(OPLEDS)中获得了Polariton电致工(EL)发射,具有较高的亮度,窄带发射,高色纯度,高极性,高极性以及出色的光学泵送极性元素Laser。此外,我们通过理论分析评估了电泵浦极性激光的潜力,并提供了可能的解决方案。这项工作提供了一种强大的策略,具有材料 - 设备组合,为电动有机单晶的极性发光设备和可能的激光器铺平了道路。
背部动作是指在系统上恢复行动以根据外部刺激来量身定制其性质的响应。这种效果是许多电子设备(例如放大器,振荡器和传感器)的核心。在这里,我们证明可以利用反作用来实现超导电路中的非转录运输。在我们的设备中,无耗散电流向一个方向流动,而耗散运输则朝相反的方向出现。超电流二极管依靠磁元素或涡流来介导电荷传输或外部磁场以打破时间反转对称性。反作用仅将传统的倒数超导链连接转动,而当前偏置方向之间没有不对称的弱环节变成整流器,其中临界电流振幅取决于偏置符号。超流动的自我交流源于金属和半导体系统中临界电流的栅极可调性,该系统促进了具有可选极性的几乎理想的无磁场整流。
通过强光 - 膜相互作用产生激子 - 极性的产生代表了量子现象的新兴平台。基于胶体纳米晶体的极化系统的一个重大挑战是能够在室温下以高保真度操作。在这里,我们通过与Fabry-Pérot光腔的CDSE纳米片(NPL)偶联(NPLS)偶联,演示了室温的生成量 - 极光量。量子古典计算准确地预测了许多黑暗状态激子与光学允许的极化状态之间的复杂动力学,包括实验观察到的较低的北极星pho-To-To-To-To-To-To-To-To-To-To-To-Pho-To-To-Pho-To-To-To-Pho-To-To-To-Pho-To-To-Pho-To-To-To-To-To-To-To-To-To-To-To-Pho-To-To-Plo-To-To-Palliminencence浓度的浓度在较高的平面量较高时,随着蛀牙的越来越较大,较高的平面矩处的浓度。在5 K处测得的Rabi分裂与300 K时相似,从而验证了该极化系统的温度无关操作的可行性。总体而言,这些结果表明,CDSE NPL是促进室温量子技术发展的绝佳材料。
增强现实 (AR) 是可用于提高 4.0 革命时代教育质量的交互式技术之一。本研究的目的是在动力传动课程中开发基于移动设备的交互式媒体增强现实 (ACRMobi)。此外,它还分析了讲师和学生对实施 ACRmobi 作为 21 世纪现代职业教育媒体的反应。4D 模型用作媒体产品开发模型,而使用的工具是对所开发媒体的验证和响应问卷。它使用描述性定性和定量分析技术通过查看结果标准来计算平均分数。以 ACRmobi 媒体形式获得的研究结果基于专家评估有效,并基于讲师的反应和学生的反应在其中一个职业教育机构实施后具有实用性。作为验证者的专家报告说,ACRMobi 是一种可以应用于职业教育的交互式媒体。ACRMobi 包含可以提高学生积极性的元素,因为它是基于技术的。综合学习ACRMobi更有激励性,应用也更灵活。
分散系统 - 乳液亲水性亲脂性平衡(HLB)系统:通常,每种乳化剂具有亲水性部分和亲脂性部分,其中一个或多或少具有或多或少的主要和影响,并且以已经描述了乳液类型的方式。已经设计了一种方法,即可以根据其化学成分将乳液或表面活性剂归类于其亲水性 - 亲脂性平衡或HLB。通过此方法,为每个代理分配一个HLB值或指示物质极性的数字(数字已分配到大约40个)。通常的范围在1到20之间。每种表面活性剂具有一个HLB数,代表了高度极性或亲水性的分子材料的亲脂性和亲水性部分的相对比例,而比极性较小,高嗜嗜性的材料的数量更高。HLB值为3至6的材料是高度亲脂性的,有利于Waterin-Oil(W/O)乳液。- 大约8至18的HLB值对应于有利于水中油(O/W)乳液的乳化剂。