EEG阶段越来越多地用于认知神经科学,大脑 - 计算机接口和闭环刺激设备。 但是,尚不清楚脑脑图在认知状态之间的准确性预测是多么准确。 我们终止了在11个公共数据集中的484名参与者中的parieto枕α波的EEG阶段预测准确性。 我们能够在各种认知条件和数据集中准确跟踪脑电图相位,尤其是在高瞬时α功率和信噪比(SNR)的时期。 尽管静止状态的精度通常高于任务状态,但绝对精度的差异很小,其中大多数差异归因于EEG功率和SNR。 这些结果表明,使用脑电图阶段的实验和技术应更多地集中于最大程度地减少外部噪声并等待高功率时期,而不是诱导特定的认知状态。EEG阶段越来越多地用于认知神经科学,大脑 - 计算机接口和闭环刺激设备。但是,尚不清楚脑脑图在认知状态之间的准确性预测是多么准确。我们终止了在11个公共数据集中的484名参与者中的parieto枕α波的EEG阶段预测准确性。我们能够在各种认知条件和数据集中准确跟踪脑电图相位,尤其是在高瞬时α功率和信噪比(SNR)的时期。尽管静止状态的精度通常高于任务状态,但绝对精度的差异很小,其中大多数差异归因于EEG功率和SNR。这些结果表明,使用脑电图阶段的实验和技术应更多地集中于最大程度地减少外部噪声并等待高功率时期,而不是诱导特定的认知状态。
脑电图 (EEG) 的 alpha 功率 (8 – 13 Hz) 是各种创造性任务条件的特征,与创造性构思有关。alpha 功率根据与创造力相关的任务要求而变化。本研究调查了事件相关电位 (ERP)、alpha 功率激活和潜在机器学习 (ML),以对参与创造力任务的工程专业学生的神经反应进行分类。所有参与者都执行了修改后的替代用途任务 (AUT),其中参与者将日常物品的功能(或用途)归类为创造性、无意义或普通。首先,本研究调查了中央和顶枕颞区的基本 ERP。通过了解工程专业学生创造力的生物反应表明,在 300 – 500 毫秒窗口内,无意义和创造性刺激引起的 N400 振幅(分别为 - 1.107 mV 和 - 0.755 mV)大于普通用途(0.0859 mV)。从每个感兴趣电极的总平均波形的 300 – 500 毫秒窗口上观察到 N400 效应。方差分析确定了一个显著的主效应:在创造性构思过程中 alpha 功率降低,尤其是在(O1/2、P7/8)顶枕颞区。机器学习用于对特定颞区数据的神经反应(创造性、无意义和普通)进行分类。使用 k 最近邻 (kNN) 分类器,并使用从参与者收集的数据集根据准确度、精确度、召回率和 F1 分数评估结果。kNN 分类器的整体准确率为 99.92%,曲线下面积为 0.9995,成功对参与者的神经反应进行了分类。这些结果对于机器学习技术在创造力研究中的更广泛应用具有巨大潜力。 [DOI: 10.1115/1.4056473]
抽象背景肌萎缩性侧面硬化症(ALS)是与大脑结构和功能连通性改变有关的运动网络的疾病,与疾病进展有关。此类变化是否在ALS中具有因果作用,与脑前脑结构对与神经退行性疾病相关的表型的假定影响拟合。方法本研究考虑了使用两个样本Mendelian随机化对ALS的2240个结构和功能MRI脑扫描源性表型(IDP)的因果效应和共同的遗传风险,并通过广泛的敏感性分析进一步研究了推定的关联。使用遗传相关分析探索了IDP和ALS之间共享的遗传倾向。结果增加了脑半球的白质体积与ALS有因果关系。观察到脑干灰质体积,枕骨 - 枕白质表面和左丘脑腹侧前核的体积较弱的因果关系。 在ALS和细胞内体积分数之间观察到遗传相关性,以及内囊后肢内的各向同性游离水体积分数。 结论本研究提供了证据,表明脑结构,特别是白质体积,有助于ALS的风险。观察到脑干灰质体积,枕骨 - 枕白质表面和左丘脑腹侧前核的体积较弱的因果关系。在ALS和细胞内体积分数之间观察到遗传相关性,以及内囊后肢内的各向同性游离水体积分数。结论本研究提供了证据,表明脑结构,特别是白质体积,有助于ALS的风险。
•开始自己的就寝时间 - 创建每晚的仪式可以帮助您的思想和身体知道该睡觉了。上床睡觉前一个小时开始放松一下,听轻松的音乐,喝乳白色或练习一些呼吸练习。温暖的浴缸可以帮助您感到昏昏欲睡。计划在当天早些时候执行更多苛刻的艰巨任务,如果您在一段时间内延迟工作以放松。•昏昏欲睡时上床睡觉 - 不要太早或太晚上床睡觉。•尝试一种精油 - 将几滴油(如薰衣草)放在枕头上,然后在入睡时深呼吸。在您的浴缸里几滴也可能会休息。•每天早晨同时起床 - 即使您累了并且没有睡得很好。
ashington 和 Sam “Asa” Pratt 的 Baye & Asa 是一家创作运动艺术项目的公司。嘻哈和非洲舞蹈语言是他们技术的基础。借助这些技术,他们构建了戏剧隐喻,审视系统性不平等,并将古代寓言现代化。Baye 和 Asa 是《舞蹈杂志》评选的 2022 年“25 位值得关注的艺术家”之一,并因其作品获得了 2023 年哈克尼斯承诺奖。他们的作品已受玛莎·格雷厄姆舞蹈团、巴瑞辛尼科夫艺术中心、乔伊斯剧院和雅各布枕头等著名舞蹈组织的委托。
在自然移动地图辅助导航任务中持续评估行人的认知负荷具有挑战性,因为对刺激呈现、人与地图的交互以及其他参与者反应的实验控制有限。为了克服这一挑战,本研究利用导航员在导航过程中的自发眨眼作为连续记录的脑电图 (EEG) 数据中的事件标记,以评估移动地图辅助导航任务中的认知负荷。我们研究了在给定路线上的移动地图上显示不同数量的地标(3 个 vs. 5 个 vs. 7 个)是否以及如何影响导航员在虚拟城市环境中导航时的认知负荷。认知负荷是通过眨眼相关的额中部 N2 和顶枕 P3 的峰值幅度来评估的。我们的结果显示,与显示 3 个或 5 个地标相比,顶枕 P3 幅度增加表明在 7 个地标条件下的认知负荷更高。我们之前的研究已经表明,与 3 个地标条件相比,参与者在 5 个和 7 个地标条件下获得了更多的空间知识。结合当前的研究,我们发现,与 3 个或 7 个地标相比,显示 5 个地标可以提高空间学习能力,而不会在不同城市环境中导航时增加认知负荷。我们的研究结果还表明,在地图辅助寻路过程中可能存在认知负荷溢出效应,即在地图查看过程中的认知负荷可能会影响环境中目标导向运动过程中的认知负荷,反之亦然。我们的研究表明,在设计未来导航辅助设备的显示时,应同时考虑用户的认知负荷和空间学习,导航员的眨眼可以作为有用的事件制造者,以解析反映自然环境中认知负荷的连续人类大脑动态。
根据有效编码假设,当表示具有高维性并且不相关时,神经群体可以最佳地编码信息。然而,这样的编码可能会在泛化和鲁棒性方面有所代价。过去对啮齿动物早期视觉皮层(V1)的实证研究表明,这种权衡确实限制了感觉表征。然而,这些见解是否适用于人类视觉系统的整个层次结构,尤其是高级枕颞皮层(OTC)中的物体表征,仍不清楚。为了获得新的实证清晰度,我们在此开发了一组具有参数变化的 dropout 比例(p)的物体识别模型,这会诱导系统地改变内部响应的维数(同时控制所有其他归纳偏差)。我们发现,增加 dropout 会产生越来越平滑的低维表征空间。在 dropout 约为 70% 时观察到对损伤的最佳鲁棒性,之后准确率和鲁棒性都会下降。与自然场景数据集中枕颞皮质的大规模 7T fMRI 数据进行表征比较表明,这种最佳的 dropout 程度也与最大的突发神经预测性相关。最后,使用新技术对人类 fMRI 反应的特征谱进行去噪估计,我们比较了模型和大脑特征空间之间的特征谱衰减率。我们观察到模型和大脑表征之间的匹配与表征空间中效率和鲁棒性之间的共同平衡有关。这些结果表明,不同的 dropout 可能揭示分层视觉系统中高维编码效率和低维编码鲁棒性之间的最佳平衡点。
■通过统计和结构规律的复杂组合将对象分为类别。我们试图更好地理解隐式学习导致对象类别的结构特征的神经反应。成年参与者暴露于32个对象类别,其中包含三种结构属性:在隐式学习任务中,频率,可变性和共发生。在此暴露后,参与者完成了一项识别任务,然后在fMRI会议期间出示了学习对象类别的块。分析是通过从整个梭形回旋和外侧枕皮层的ROI中提取数据来进行的,并比较整个ROI的不同结构证券的影响。行为上,我们发现该符号