在本研究中,通过刺激番茄植物中生化防御和生理生物化学性能,研究了促进真菌植物生长(PGPF)的改善能力。从Beta ufgaris Rotosphere培养的土壤(Tamiya,Fayoum省,埃及)中总共分离了25种真菌分离株。这些真菌分离株的特征是某些植物生长促进活性代谢产物的产生,从而增强植物生长并抑制疾病。选择了四种真菌分离株作为植物生长促进最多的。四个真菌分离株在形态上被鉴定为尼日尔曲霉,弗拉夫斯,粘液sp。和青霉sp。在温室条件下,用这些真菌治疗的番茄植物分别对枯萎病显着降低。生化防御,例如渗透压,氧化应激和抗氧化剂酶的活性,在种植后60天进行。结果表明,氧化孢子菌株对番茄植物的高度破坏性作用为PDI 87.5%。此外,适用于感染番茄的PGPF滤液改善了渗透液,总苯酚和抗坏血酸。有趣的是,枯萎病对番茄植物的有害影响大大降低了,从降低的MDA和H 2 O 2水平可以明显看出。因此,这些结果强调,土壤含有拮抗真菌提供了几种植物生长 - 促进真菌(PGPF),可以将其作为番茄植物中强大的生物控制剂利用,以针对紫红色枯萎病。Biostimulans包括非致病性关键词:促进真菌的植物生长;镰刀菌;生物压力,生化防御。在气候变化的威胁和病原体的传播,提高农作物生产力并避免使用化学农药的情况下引入引入是农业行业的主要问题[1]。真菌疾病是许多国家对农作物造成严重损害的最危险的生物学压力之一[2]。最著名的真菌疾病病原体之一,镰刀菌,会对农作物,尤其是蔬菜作物产生负面影响[3-5]。然而,通过番茄生长的所有阶段,氧气孢子菌引起的真菌枯萎病[6,7]。番茄被认为是埃及最重要的作物之一,用于局部喂养和出口[8]。考虑到番茄作物的重要性,开发了提高对生物胁迫(例如真菌等生物压力)的新管理方法的发展,可能有助于增强安全且不含有害化学农药的全球粮食生产[9]。一致认为,可以通过外部喷洒生物和非生物刺激或诱导剂来激活植物感染的植物免疫。
Carl H. Beckman综合卷,题为“植物的枯萎病的性质”。 卡尔·H·贝克曼(Carl H. Beckman)于1923年5月9日出生于RI的克兰斯顿。 在第二次世界大战期间在美国武装部队服役后,他参加了罗德岛大学的布伦南·瓦尔南(Uni-Eileen Brennan Versity),在那里他获得了学士学位。 学位在1947年。 艾琳·布伦南(Eileen Brennan)专注于空中博士学位。在过去40年中,植物污染学位是植物病理学的压力限制了植物病理学。 在这段时间里,威斯康星州的橡树博士的研究在Drs的指导下对Wilt进行了研究。 A。J.包括Riker和J. E. Kuntz在内的所有主要空气污染物都启动了他的臭氧,二氧化硫,氢氢对血管枯萎病的兴趣,过氧乙酰硝酸盐和酸性疾病。 完成了他的毕业生雨后。 此外,Brennan博士进行了研究,贝克曼博士返回了所研究的许多次要污染物,罗德岛大学,除了包括氯气,乙烯包括1960年代的五年时期,当时他加入了中央研究空气污染物和醛。 联合水果公司的实验室博士专注于布伦南及其同事,已经展示了香蕉的枯萎。 这些在贝克曼博士的研究成就已致力于阐明80篇卷积的期刊文章。 复杂的一系列相互作用的生物化学和生理学博士Brennan博士具有真正的科学本能和敏锐的事件力量,并且在观察后发生了伴随的结构变化。 血管枯萎。Carl H. Beckman综合卷,题为“植物的枯萎病的性质”。卡尔·H·贝克曼(Carl H. Beckman)于1923年5月9日出生于RI的克兰斯顿。在第二次世界大战期间在美国武装部队服役后,他参加了罗德岛大学的布伦南·瓦尔南(Uni-Eileen Brennan Versity),在那里他获得了学士学位。学位在1947年。艾琳·布伦南(Eileen Brennan)专注于空中博士学位。在过去40年中,植物污染学位是植物病理学的压力限制了植物病理学。在这段时间里,威斯康星州的橡树博士的研究在Drs的指导下对Wilt进行了研究。A。J.包括Riker和J. E. Kuntz在内的所有主要空气污染物都启动了他的臭氧,二氧化硫,氢氢对血管枯萎病的兴趣,过氧乙酰硝酸盐和酸性疾病。完成了他的毕业生雨后。此外,Brennan博士进行了研究,贝克曼博士返回了所研究的许多次要污染物,罗德岛大学,除了包括氯气,乙烯包括1960年代的五年时期,当时他加入了中央研究空气污染物和醛。联合水果公司的实验室博士专注于布伦南及其同事,已经展示了香蕉的枯萎。这些在贝克曼博士的研究成就已致力于阐明80篇卷积的期刊文章。复杂的一系列相互作用的生物化学和生理学博士Brennan博士具有真正的科学本能和敏锐的事件力量,并且在观察后发生了伴随的结构变化。血管枯萎。在她的整个职业生涯中,她奠定了新的基础,植物感染了血管枯萎病原体,尤其是由于她对研究和令人难以置信的发现感的热情而引起的。镰刀菌和黄虫属内的土壤生物真菌。在1969年,布伦南博士在植物病理学中报道了虽然血管枯萎病长期以来对感染病毒感染的叶子的破坏性比全世界健康的许多作物都更耐受臭氧,但血管枯萎病的机制。这是同类文章的第一篇文章,并且在其他机构的其他出版物的贝克曼博士(Beckman)博士证实了35年前发起的研究计划时,就无法理解发病机理。病毒与臭氧之间的相互作用很少。本文有助于建立植物范围内发生的相互作用,以发展对重要性血管结构的欣赏。贝克曼博士揭示了生物/非生物空气污染相互作用的许多关键事件,这一区域仍在确定血管感染后的耐药性或易感性。他开发了一种广泛的抵抗机制模型,在她的整个职业生涯中,布伦南博士允许她的科学遵循初步感染。这些涉及诱捕和本地化的好奇心,引导她,不受血管凝胶的政治压力和孢子的束缚,刺激血管实质偏见。她在1960年代推测醛可能是形成泰糖的有毒细胞,并将酚类物质输注到园艺作物中。Brennan博士在这些结构中进行了实验,从而导致被感染区域密封。她通过暴露于植物上的野外症状,他表明在受控条件下,易感植物中发生了相同的过程。被查看了工作,但在这些情况下,病原体将当时的序列破坏为较小的污染物的效果,但如今的反应并能够通过植物系统地传播。碳氢化合物等碳氢化合物的毒性得到了更好的赞赏,他的工作也有助于解释水压力的原因,并为空气研究的新分支和在污染效应中产生的水压力症状的表达提供了基础。Brennan博士的成就已得到认可,贝克曼博士工作的许多重大贡献是科学界的时代,这是她对美国环境保护署和反应的感染参与时间和空间方面的重视所证明的。将注意力集中在科学顾问委员会的特定位置上。Brennan博士曾是对感染过程至关重要的会员场所,并强调了行政和生态委员会的强调,并且最近在这些地点顾问的顾问中,这些事件的重要性是董事会清洁空气科学咨询的顾问。阻力反应的成功或失败。她的血管枯萎病发病机理,并为未来工作空气杂志的编辑委员会提供了方向的基础。这项工作帮助布伦南博士担任秘书/司库,副总统,并统一了与1975年至1977年与APS东北部门总统有关的思想多样性。 div>。 div>污染控制协会,森林科学杂志和贝克曼博士曾在植物疾病记者的编辑委员会任职。在1988年,她被评为植物病理学,生理植物病理学和APS出版社,空气污染控制协会。是“植物真菌枯萎病”和“植物病理学教授基本植物疾病”的男女同伊,他对植物血管枯萎病的研究和控制表示敬意。”他的职业通过她的承诺和成就。,她在枯萎病领域的领域占有优势,该服务社区,她的州和她的国家与APS专着和审查委员会一起选择了他的杰出服务,该服务进一步了解了空气,以修订和更新J. C. Walker博士的专着,“ Fusarium污染问题,” Fusaumium污染问题,并向植物造成了植被的危险。”后来将这项工作扩展为更清洁环境的目标。
摘要:火龙果是一种很有潜力的植物,是一种节水的藤本仙人掌,富含甜菜碱和抗氧化剂,具有药用价值,是种植者的收入来源。本研究调查了塞拉多火龙果作物生物疾病的流行情况,在里亚尔马 - GO的商业种植区收集了 16 个茎样本、根样本和 0-20 厘米深处的土壤样本。枯萎病、炭疽病和枝腐病被确定为主要病害,其中炭疽病最为普遍。在研究区域收集的土壤和根部样本中不存在线虫。关键词:火龙果属、真菌、炭疽病、抗性、管理。摘要:火龙果是一种有潜力的植物,是一种节水的藤本仙人掌,富含甜菜碱和抗氧化剂,具有药用价值,是生产者的收入来源。本研究通过在里亚尔马 - GO的商业种植区采集 16 个茎、根和土壤样本(深度为 0-20 厘米)调查了塞拉多火龙果种植中生物疾病的流行情况。枯萎病、炭疽病和枝腐病被确定为主要病害,其中炭疽病最为普遍。在研究区域收集的土壤和根部样本中不存在线虫。关键词:火龙果属、真菌、炭疽病、抗性、管理。
摘要。Rifhani NF,Apriana A,Sisharmini A,Santoso TJ,Trijatmiko KR,Slamet-Loedin IH,Yunus A. 2023。 CRISPR/CAS9模块的构建和芳族水稻CV的遗传转化。 Mentik Wangi用于开发细菌叶枯萎病。 生物多样性24:3258-3268。 米CV。 Mentik Wangi是一种局部芳香大米,容易受到害虫和疾病的影响,例如由Xanthomonas oryzae(XOO)引起的细菌叶枯萎病(BLB)。 该细菌会对植物造成损害,从而降低作物产量。 这项研究旨在获得CRISPR/CAS9模块构建体,并将该构建体引入大米CV。 Mentik Wangi用于发展BLB抗性。 使用金门法进行了CRISPR/CAS9模块的制造,并将该构建体引入米CV。 使用农杆菌Tumefaciens进行。 构建具有OSSWEET11和OSSWEET14基因的多个GRNA的CRISPR/CAS9模块已成功,使用再生和转换效率值产生的T0生成的129个推定的转换线分别为9.4%和9.8%。 结果表明,HPT基因的36行是阳性的,表明CRISPR/CAS9-GRNAOSSWEET模块构建体成功地输入了水稻CV。 Mentik Wangi。 需要进一步的分析来鉴定Ti产生转基因植物的靶基因区域中的诱变以及BLB耐药性的表型测试。Rifhani NF,Apriana A,Sisharmini A,Santoso TJ,Trijatmiko KR,Slamet-Loedin IH,Yunus A.2023。CRISPR/CAS9模块的构建和芳族水稻CV的遗传转化。Mentik Wangi用于开发细菌叶枯萎病。生物多样性24:3258-3268。米CV。 Mentik Wangi是一种局部芳香大米,容易受到害虫和疾病的影响,例如由Xanthomonas oryzae(XOO)引起的细菌叶枯萎病(BLB)。 该细菌会对植物造成损害,从而降低作物产量。 这项研究旨在获得CRISPR/CAS9模块构建体,并将该构建体引入大米CV。 Mentik Wangi用于发展BLB抗性。 使用金门法进行了CRISPR/CAS9模块的制造,并将该构建体引入米CV。 使用农杆菌Tumefaciens进行。 构建具有OSSWEET11和OSSWEET14基因的多个GRNA的CRISPR/CAS9模块已成功,使用再生和转换效率值产生的T0生成的129个推定的转换线分别为9.4%和9.8%。 结果表明,HPT基因的36行是阳性的,表明CRISPR/CAS9-GRNAOSSWEET模块构建体成功地输入了水稻CV。 Mentik Wangi。 需要进一步的分析来鉴定Ti产生转基因植物的靶基因区域中的诱变以及BLB耐药性的表型测试。米CV。Mentik Wangi是一种局部芳香大米,容易受到害虫和疾病的影响,例如由Xanthomonas oryzae(XOO)引起的细菌叶枯萎病(BLB)。该细菌会对植物造成损害,从而降低作物产量。这项研究旨在获得CRISPR/CAS9模块构建体,并将该构建体引入大米CV。Mentik Wangi用于发展BLB抗性。使用金门法进行了CRISPR/CAS9模块的制造,并将该构建体引入米CV。使用农杆菌Tumefaciens进行。构建具有OSSWEET11和OSSWEET14基因的多个GRNA的CRISPR/CAS9模块已成功,使用再生和转换效率值产生的T0生成的129个推定的转换线分别为9.4%和9.8%。结果表明,HPT基因的36行是阳性的,表明CRISPR/CAS9-GRNAOSSWEET模块构建体成功地输入了水稻CV。Mentik Wangi。需要进一步的分析来鉴定Ti产生转基因植物的靶基因区域中的诱变以及BLB耐药性的表型测试。
与住房和城市发展部 (HUD) 合作,该市最近获得了与空置和废弃房产计划相关的技术援助。作为技术援助的一部分,顾问进行了挡风玻璃调查,以确定街区级别的房产状况分析。该街区的物理条件分析结果显示,该街区的北部和东南部最稳定,受枯萎病影响最小,而西部和西南部则经历了最严重的衰退和投资减少。此外,顾问还进行了空地盘点。根据这些信息和市拆迁记录,确定该街区内大约 20% 的地块是空地。
土壤健康状况恶化是实现农业可持续性的主要障碍之一。这种损失通常是由于采用不良的耕作方式和过度使用化学品(如化肥和杀虫剂)造成的(Kumar 等人,2017 年;Kumar 等人,2018 年)。阻止土壤质量恶化的一个潜在策略是在土壤或植物部位施用微生物接种剂(Banik 等人,2019 年)。如果我们要充分利用微生物的潜力,就必须了解微生物在植物-土壤系统的生物地球化学循环中以及在减少毒素、营养动力学、抗氧化活性、系统性诱导抗性、病原体抑制等过程中的作用(Govindasamy 等人,2008 年)。除了提高产品质量和环境健康外,这些相互作用还将减轻合成化学品和其他污染物的毒性。本期特刊涵盖了与土壤、植物和微生物之间关系相关的方面,以增强土壤健康和植物生长,这对于理解农业系统的可持续性特别有帮助。在本研究主题中,研究了园艺作物中植物疾病的流行情况和潜在的管理策略,包括番茄枯萎病、苹果再植病 (ARD) 和猕猴桃早期衰退综合症。猕猴桃早期衰退综合症的因素是由于气候条件和农艺土壤管理之间的相互作用而引发的。因此,适当管理这些条件可能有助于抑制猕猴桃早期衰退综合症(Bardi 等人)。而当向土壤中添加 ZnO-NPs 时,通过创建有利于植物生长的新微生物群落结构可以克服 ARD 疾病(Pan 等人)。另一方面,Chaturvedi 等人强调了应用细菌内生菌联合体保护番茄光合系统免受枯萎病侵害。根际和内生有益微生物在促进植物生长和改善土壤健康方面发挥着至关重要的作用。根际微生物改善
1. Garcia-Bastidas, F. 等人。哥伦比亚首次报道由 Fusarium odoratissimum 引起的卡文迪什香蕉枯萎病热带小种 4。APS 出版物。(2019 年)。259 https://doi.org/10.1094/PDIS-09-19-1922-PDN 260 2. Varma, V. 和 Bebber, DP。气候变化对全球香蕉产量的影响。Nat. 261 Clim. Change 9 , 752-757 (2019)。262 3. Simmonds, NW 和 Shepherd, K。栽培香蕉的分类和起源。J. 263 Linn. Soc. Bot。55 , 302-312 (1955)。 264 4. Gold, CS、Kiggundu, A.、Abera, AMK 和 Karamura, D. 乌干达 Musa 品种的多样性、分布和农民偏好。Exp. Agric. 38, 39-50 (2002)。 266 5. Gambart, C. 等人。农业生态集约化战略对农场绩效的影响和机遇:乌干达中部和西南部香蕉种植系统案例研究。食品系统可持续发展前沿。23, 87 (2020)。 269 6. Wielemaker, F. 引自:Kema, GHJ 和 Drenth, A. (eds.)。实现香蕉的可持续种植。第 1 卷:栽培技术。伯利·多德农业科学系列。 271 Burleigh Dodds Science Publishing,英国剑桥(2018 年)。272 7. Ordonez,N. 等人。最糟糕的情况是香蕉和巴拿马病——当植物和病原体克隆相遇时。PLoS Pathog。11,e1005197(2015 年)。274 8. Ndayihanzamaso,P. 等人。开发用于检测东非和中非尖镰孢菌古巴专化种谱系 VI 菌株的多重 PCR 检测方法。欧洲植物病理学杂志(2020 年)。277 9. Soluri,J。口味的解释:出口香蕉、大众市场和巴拿马病。环境。278 Hist。7,386-410(2002 年)。 279 10. Stover, RH 疾病管理策略和香蕉产业的生存。植物病理学年鉴。24 ,83-91 (1986)。281 11. Bubici, G.、Kaushal, M.、Prigigallo, MI、Gómez-Lama Cabanás, C. 和 Mercado-Blanco, J. 香蕉枯萎病的生物防治剂。微生物学前沿。10 ,616 (2019)。283 12. Kaushal, M.、Mahuku, G. 和 Swennen, R. 枯萎病感染田中有症状和无症状香蕉相关的根部定植微生物组的宏基因组学见解。植物。9 ,263 (2020)。 286 13. Mollot, G.、Tixier, P.、Lescourret, F.、Quilici, S. 和 Duyck, PF 新的主要资源增加了对香蕉农业生态系统中害虫的捕食。农业与昆虫学。14 , 317-323 288 (2012)。 289 14. Djigal, D. 等人。覆盖作物改变香蕉农业生态系统中土壤线虫食物网。土壤生物化学。48 , 142-150 (2012)。 290 15. Karangwa, P. 等人。东非和中非尖镰孢菌古巴专化的遗传多样性。植物疾病。102 , 552-560 (2018)。 293 16. Jassogne, L. 等人。咖啡/香蕉间作为乌干达、卢旺达和布隆迪的小农咖啡 294 农民提供了机会。在 G. Blomme、P. Van Asten 和 B. Vanlauwe 中,撒哈拉以南非洲湿润高地的香蕉系统(第 144-149 页)。国际农业和生物科学中心。沃灵福德:CABI。(2013 年)。 17. Norgrove, L. 和 Hauser S. 喀麦隆南部农林业系统中不同树木密度和“刀耕火种”与“刀耕火种”管理下芭蕉的产量。大田作物研究。78,185-195(2002 年)。 18. Zhu, Y. 等人。水稻遗传多样性和疾病控制。自然 406,718-722(2000 年)。 19. Deltour, P. 等人。农林复合系统对香蕉枯萎病的抑制作用:土壤特性和植物群落的影响。农业生态系统环境。239,303 173-181(2017 年)。304
Kumar Singh (2022)。水稻细菌性枯萎病抗性基因克隆和分子表征的最新进展。在: Shukla P、Kumar A、Kumar R、Pandey MK (eds) 2,生物胁迫,IOP Publishing Ltd 2022。ISBN:9780750349246 4. Vinay Sharma、Kalant Jambaladinni、Nitesh Singh、Neelam Mishra、Anirudh Kumar 和 Rakesh Kumar (2022)。了解气候变化下植物对环境相关的非生物胁迫的反应。收录于: Shukla P、Kumar A、Kumar R、Pandey MK(编辑)植物应激的分子反应和基因工程,第 1 卷,非生物应激,IOP Publishing Ltd 2022。ISBN:9780750349192 5. Rahul Narasanna、Aadil Mansoori、Neelam Mishra、Vinay Sharma、Sherinmol Thomas、
生产力(Abbass等,2022)。因此,它们对与食品相关的独特品质和地理指示构成了威胁。在过去的几十年中,气候变化已经开始影响茄科作物,极端的天气模式将显着影响番茄,胡椒和茄子的产量和质量(Lee等,2018; Bhandari et al。,2021; 2021; Suman,2022; 2022; 2022; 2022; Toppino等。,2022年)。尽管某些农业实践和耕种技术可能会提供临时应对机制,但需要实施长期策略来应对脆弱地区气候变化的挑战。繁殖策略在开发气候富裕品种以及常规育种技术(CBT)和新育种技术(NBT)方面起着至关重要的作用,为增强低输入生产系统中农作物弹性提供了强大的工具(Razzaq等人,2021年,2021年; Xiong等,20222)。从历史上看,育种计划一直集中在开发抗疾病的品种上以确保可持续生产(Poczai等,2022)。通过选择性地育种自然抗性或纳入野生亲戚的抗药性基因,育种者可以增强农作物对常见疾病的韧性,例如晚枯萎病,细菌枯萎病和病毒感染。繁殖工作还针对农艺性状,可以减轻气候变化对溶阿酸作物的影响,包括干旱耐受性,耐热性,耐水性(WUE)和营养吸收效率(NUE)。同时,增强水果质量的属性是番茄,胡椒和茄子的关键育种目标(Bebeli和Mazzucato,2009年)。因此,主要的育种重点是改善特征,例如avor,营养含量,质地和保质期,将它们纳入新品种,以确保这些农作物对消费者保持吸引力并适应不断变化的市场需求。在本文中,将审查有关下一代基因分型和 - 组技术的最新技术,用于审查茄科家族中多种弹性特征的分子预测,旨在为恢复和弹性设施(RRF)NextGeneration externeration Ensteration eutlanting Plans建立研究活动的起点。
飞机发动机自动混合控制的空气消耗参数 [附参考文献列表];作者:Sidney J. Shames。1945 年 [1948 年出版]。封面标题 ii4-6 n il。4°(国家航空咨询委员会,报告 804。)10c。Y3.N 21/5:5/804 海军部长年度报告,1947 财政年度。1948。vii+83 第 11 页。1 图 2 页图和标签。(海军部)40c。N 1.1:947 人工接种条件下的棉花细菌性枯萎病 [附引用文献列表];作者:Richard Weindling。1948 年 5 月。封面标题,59 页。 (农业部技术公报 956)[由植物产业、土壤和农业工程局编写。] 20c. A 1.36: 956 波多黎各的竹子栽培和利用[附所引文献清单;作者