在德尔马瓦半岛分离出IBDV 2512株[1; 2]。随后,2512株通过在鸡胚中传代进行减毒[21; 22]。先前的研究报告称,减毒的IBDV 2512株具有良好的免疫原性,是疫苗开发的理想菌株[14]。基于2512株或其衍生物的减毒活疫苗可以同时诱导体液免疫和细胞免疫,调动免疫系统对IBDV产生保护作用。虽然商业疫苗中的减毒株2512仍具有中等毒性,但基于2512株或其衍生物的活疫苗对强毒IBDV具有良好的保护作用。有趣的是,在我们之前的流行病学调查中,从2512免疫的鸡中分离出少量新的IBDV变异株
疫苗对恶性疟原虫网状细胞结合蛋白同源物5(PFRH5)的靶向寄生虫生命周期的血液阶段。pFRH5有可能触发菌株转移抗体的产生,并在临床前和早期临床研究中证明了其功效。疫苗诱导的单克隆抗体(mAb)对PFRH5表现出对来自不同地理区域的恶性疟原虫实验室菌株的有希望的结果。在这里,我们评估了疫苗诱导的抗PFRH5 mAb对遗传多样的恶性疟原虫临床分离株的功能影响。我们使用了先前从英国成年PFRH5疫苗的单个B细胞中分离出来的mAB,并使用了前体内生长抑制活性(GIA)测定法来评估其针对恶性疟原虫临床分离株的功效。下一代测序(NGS)用于评估恶性疟原虫临床分离株中遗传多样性的广度,并推断抗体易感性涉及的基因型/表型关系。我们显示了三个主要GIA组的临床分离株的剂量依赖性抑制:高,中和低。除一个分离株外,我们的数据显示,恶性疟原虫临床分离株和3D7参考菌株之间的mAb GIA谱没有显着差异,该菌株携带了疫苗等位基因。我们还观察到了MAB组合的添加剂关系,因此GIA-LOW和GIA-MEDIUM抗体的组合导致GIA增加,对多克隆IgG反应中特定克隆的贡献具有重要意义。虽然我们的NGS分析显示了PFRH5基因中新型突变的发生,但预计这些突变对已知MAB的抗原结构或识别几乎没有功能影响。我们目前的发现补充了关于抗PFRH5 mAb的菌株超然潜力的早期报道,据我们所知,这是关于恶性疟原虫临床分离株易感性的第一份报告,从自然感染对疫苗诱导的人类MAB对PFRH5的敏感性。
标记避免了与体外产生的不稳定 sgRNA 相关的困难,使其成为一种产生无转基因改良 F. venenatum 菌株的有吸引力的系统。我们的结果表明,在大多数分离株中,在没有选择的情况下载体会丢失,表现为无法在潮霉素选择培养基上生长。在少数分离株中观察到的持续潮霉素抗性表明载体元素可能整合到染色体中(包括用于抗潮霉素的 hph 基因),或残留的染色体外载体(这可能是由于某些分离株中的初始拷贝数较高)。从一个转化菌落中回收潮霉素抗性和易感单孢子分离株表明在孢子形成之前,部分但不是所有细胞核中的残留载体会丢失。通过持续培养,预计最终所有细胞核都会丢失
单纯疱疹病毒1型(HSV-1)是一种神经性α-掌上病毒,在感染个体的感觉神经元中建立了终生感染,并伴有导致(A)症状病毒的潜在病毒的间歇性重新激活。虽然Acyclovir(ACV)是治疗HSV-1感染的安全且高效的抗病毒药,而长期使用可能会导致ACV耐药(ACV R)HSV-1出现,随后会导致ACV RE RACTORACTORY疾病。在这里,我们从反应激活的疱疹眼病患者中分离出HSV-1菌株,但对ACV治疗没有反应。分离株在编码胸苷激酶(TK)蛋白的病毒UL23基因中带有新型的非同义F289S突变。由于ACV需要病毒TK和随后的细胞激酶来抑制HSV-1复制,因此在ACV R HSV-1菌株中通常会突变UL23基因。使用CRISPR/CAS9介导的HSV-1基因组编辑研究了F289S突变引起ACV R的潜在作用。将原始临床分离株中的F289S突变转移到野生型序列S289F导致ACV敏感(ACV S)表型,并引入F289S在ACV S HSV-S HSV-1参考菌株中的替换导致ACV R RETOTY型。总而言之,我们在患有ACV难治性疱疹性眼病的患者眼中确定了新的HSV-1 TK突变,该患者借助CRISPR/CAS9介导的基因组工程技术被确定为病变ACV突变。通过CRISPR/CAS9对临床HSV-1分离株进行直接编辑是评估单个残基取代的有力策略
温血动物(包括鸟类)肠道中自然存在的大肠杆菌是淡水水质监测中粪便污染的常用指标,可作为粪便污染和病原体的替代指标(1)。然而,目前用于计数大肠杆菌的培养方法无法区分粪便大肠杆菌和归化或环境相关的“类大肠杆菌”菌株,也称为大肠杆菌隐蔽进化枝(2-4)。Escherichia whittamii(隐蔽进化枝 2)(5)、Escherichia ruysiae(隐蔽进化枝 3 和 4)(6)和 Escherichia marmotae(隐蔽进化枝 5)(7)是最近描述的类群,但宿主物种和环境持久性仍有待确定。该项目专注于大肠杆菌和大肠杆菌属的全基因组测序。来自环境来源(淡水、河流沉积物、水生生物膜、土壤和鸟类及哺乳动物的粪便)。菌株是在研究对比土地使用对大肠杆菌属的影响的研究中获取的,并按照之前描述的方式进行培养(8)。大肠杆菌和新大肠杆菌属的基因组数据将提供有关这些细菌在环境中存活的信息和更准确的粪便追踪,从而能够识别并迅速解决影响水道的最严重污染源。
1卡诺州立尼日利亚热带健康科学与技术学院分配学位。2验光系,盟军健康科学学院,卡诺尼日利亚贝罗大学。3尼日利亚苏美拉市Al-Istiqamah大学医学实验室科学系。4农业,科学技术学院动物健康系,尼日利亚塔拉巴州贾林戈。5 Aminu Dabo卫生科学学院牙科健康科学系,卡诺州立尼日利亚。 6 Aminu Dabo卫生科学与技术学院的分发视角系,卡诺州立尼日利亚。 7天然与药学学院微生物学系,贝耶罗大学卡诺·尼日利亚大学。 8吉伐瓦尼日利亚联邦大学杜德大学微生物与生物技术系。5 Aminu Dabo卫生科学学院牙科健康科学系,卡诺州立尼日利亚。6 Aminu Dabo卫生科学与技术学院的分发视角系,卡诺州立尼日利亚。7天然与药学学院微生物学系,贝耶罗大学卡诺·尼日利亚大学。 8吉伐瓦尼日利亚联邦大学杜德大学微生物与生物技术系。7天然与药学学院微生物学系,贝耶罗大学卡诺·尼日利亚大学。8吉伐瓦尼日利亚联邦大学杜德大学微生物与生物技术系。
金黄色葡萄球菌是世界上最致命的病原体之一,这种生物体的抗性菌株的升高导致许多威胁生命的医疗状况。这种革兰氏阴性菌可能会引起一系列疾病,从轻微的皮肤感染到严重感染,例如毒性休克综合征或心内膜炎,并且在美国导致的死亡人数比任何其他耐药性病原体都要多。每年由于虫球菌感染而在美国每年在美国发生1,2个门诊和急诊室就诊和464 000次住院。3随着抗生素的使用正在上升,医院中多药的抗菌菌株正在出现,最值得注意的是耐甲氧西林的金黄色葡萄球菌(MRSA),事实证明,传统抗生素的感染是徒劳的。