摘要:本综述集中于反义和功能性核酸,用于完全合理的药物设计和药物靶标评估,旨在减少时间和金钱,并增加成功的药物开发率。核酸具有独特的特性,可以在药物发育中作为药物靶标和药物发挥两个重要作用。药物靶标可以是信使,核糖体,非编码RNA,核酶,核糖开关和其他RNA。此外,各种反义和功能性核酸可能是药物发现中的宝贵工具。在亲核和工程方法中基于RNA的基因表达控制基因表达的许多机制开放了具有关键作用的药物发现的新途径。本综述讨论了在药物输送和设计中反义和功能性核酸的设计原理,应用和前景。这种核酸包括反义寡核苷酸,合成核酶和siRNA,可用于有效的有效抗菌药物开发。反义和功能性核酸的重要特征是使用有理设计方法进行药物开发。本评论旨在普及这些新颖的方法,以使制药业和患者受益。
CRISPR-CAS是细菌和古细菌中使用CRISPR RNA引导的监视复合物的自适应免疫系统,以靶向互补的RNA或DNA,以破坏1-5。定期间隔的目标RNA裂解是III型效应子复合物6-8的特征。在这里,我们确定了synechocystis型III-DV复合物的结构,这是从多蛋白到单蛋白III型效应物9、10,在裂解前和裂解后状态下的明显进化中间体。结构显示了效应子中的多生成融合蛋白如何以不寻常的排列束缚在一起,以组装成活性和可编程的RNA核酸内切酶,以及效应子如何利用与其他III类型效应子的靶RNA播种的独特机制。使用结构,生化和量子/经典分子动力学模拟,我们研究了三个催化位点的结构和动力学,其中靶RNA上的核糖的2'-OH在上层磷酸盐的线体自我裂解中起着核噬菌的作用。引人注目的是,大多数III型复合物的催化转移的排列类似于核酶的活跃位点,包括锤头,手枪和Varkud卫星核酶。我们的工作提供了对III型效应型复合物进化中重要的中间体对RNA靶向和裂解机制的详细洞察力。
在簇的调节间隔短的短质体重复序列(CRISPR)/CRISPR相关蛋白(CAS)系统中,原生质体不仅有助于快速验证各种RNA引导的内核酶的诱变效率,而且还可以是平台的dna-fiee。迄今为止,后一种方法已应用于许多农作物,尤其是那些具有复杂基因组的农作物,少年时期,杂种趋势和/或自我不相容性。原生质体再生是无DNA基因编辑的关键步骤。在本报告中,我们回顾了原生质体技术的历史和一些未来前景,包括原生质体转染,转化,融合,再生以及基于CRISPR/CAS的繁殖中的当前原生质体应用。
在近几十年内,涉及DNA精确操纵的核酸酶的技术已经发生了深刻的进步,成为了诱导音节突变的有希望的替代方法,并且对基因表达的薄而控制。是基因组编辑,例如核酸酶锌指(锌指核酸酶),具有转录本激活型效应的数字(Talens,英语转录本类核酸酶),以及最近的CRISPR/CAS技术(来自英语粘膜调节性调节性的短与核酶壳相关)。后者具有其革命性,尤其是为了缘故,普遍性和相对简单性(Pickar-Oliver; Gersbach,2019年)。此外,CRISPR/CAS是一种灵活的工具,需要进行修改,这有助于其持续的改进并多样化其在细胞功能和生物技术中的应用。
生物遗传学工程是一项重要的技术,可以明智地管理微生物代谢产品工厂。在过去的十年中,在生物遗传学工程中进展了有效控制和修饰基因的基因组修饰方法。crispr是基因组编辑技术,可修饰生物体的基因组。CRISPR及其相关的RNA引导的内核酶是用于防御异物DNA和RNA的多功能晚期免疫系统框架。CRISPR是无与伦比的分辨率的高效,可访问和值得信赖的基因组修饰工具。目前,CRISPR-CAS9方法扩展到工业操纵细胞。代谢改良的生物正在迅速对产生不同生物的组件的产生感兴趣。在这里,章节探讨了基于使用不同CRISPR相关的CAS9的不同细胞中靶向生物分子的控制生产力。
非常需要设计纳米颗粒表面形状的局部变化。这是因为这些修饰阳离子可以改善生物相容性和细胞摄取。23在这里,我们描述了一种在含核碱酶的多聚膜膜外表面形成局部变形的方法。我们表明,在插入包含互补核酶的二嵌段共聚物时,类似触手的节点可以在聚合物的表面形成(图1b)。与蓄水池一样,膜变形和随之而来的淋巴结形成依赖于不同的膜成分之间的互补氢键。将核碱酶配对的可编程性纳入自组装合成聚合物24 - 28先前已被利用以控制纳米颗粒形态,29 - 35瓶刷组件36和颗粒表面化学,37,以及37层的聚合,38,39货物货物40 - 42-42-42-42-42-42-42和增强的水。43
使用活化磷酸盐的使用通常允许轻度反应条件以核苷对核糖磷酸化的磷酸化,通常在水分条件下进行反应。最常将反应作为糊反应进行,以最大程度地减少活化的磷酸盐的水解,同时有利于核苷和磷酸化剂的凝结反应。[15,17]尽管可以以这种方式增加产率,但通常不可能对单个羟基的选择性磷酸化。Krishnamurthy等。证明,使用DAP,可以直接合成2'3'核苷单磷酸盐(2'3'CNMP),仅产生痕量的5'-氨基磷酸盐,最终在水中培养基中最终凝结为5'核苷单磷酸盐(5'NMP)。[15] 2'3'CNMP不仅在人体中发挥作用[18],而且还可能为在早期地球上形成RNA的途径提供了途径。[19,20]已经表明,发夹核酶或其变体能够催化在RNA链中添加2'3'CNMP,因此可能在RNA世界假设中起着基本作用。[19-23]
使用CRISPR-CAS9系统在目标部位进行基础取代是一种用于基因组编辑的典型技术,具有在基因治疗和农业生产力中应用的潜力。当CRISPR-CAS9系统使用指导RNA将Cas9内核酶引导到目标位点时,它可能会误导到潜在的脱靶位点,从而导致意外的基因组编辑。尽管已经提出了几种计算方法来预测脱靶效应,但仍有提高脱靶效应能力的空间。在本文中,我们提出了一种有效的方法,称为CRISPR-M,采用新的编码方案和一种新型的多视图深度学习模型,以预测含有indels和不匹配的目标位点的tar-tar- fet效应。crispr-m利用卷积神经网络和双向长期记忆复发性神经网络来构建三支分支网络,以朝着多视图构建。与现有方法相比,CRISPR-M显示出在实际世界数据集上运行的显着性能优势。此外,在多个指标下对CRISPR-M的实验分析揭示了其提取特征并验证其对SGRNA脱离目标效应预测的优势的能力。
有两种改善特定城市Cas12a和Cas13a核酸酶的常用方法。是工程师CRRNA,包括将合成不匹配引入crrna的间隔域,设计发夹 - 间隔者CRRNA,以及用2 0 -O -methyl修改CRRNA。21 - 25然而,必须仔细设计不匹配的CRRNA中的数量和位置,以减少无靶标的效果,而无需牺牲CAS蛋白的裂解活性。22,23更重要的是,使用发夹蛋白 - 间隔者CRRNA和2 0-O-methyl modi crrna仅将原始CRISPR/CAS系统的特定城市提高了2至3倍。24,25另一种方法是高级工程cas蛋白。26 - 28,由于复杂的蛋白质表达和筛选过程,它仍然与之合作。此外,所有这些策略旨在优化CRISPR/CAS系统的不同组成部分,而无需克服裂解效率和特定城市之间的基本交易。因此,可以显着改善特定城市的策略对于它们的实际应用(例如生物传感)非常需要,因为它们将避免误解积极的结果。dnazymes(也称为脱氧核酶,DNA酶或催化DNA),是单链DNA分子,具有
摘要:定期间隔短的短膜重复(CRISPR)和相关的CAS核酸酶(CAS9)是一种尖端的基因组编辑技术,它通过使用短RNA分子来指定靶向DNA序列,通过使用短RNA分子,帮助内核酶Cas9在负责遗传性疾病的基因修复中的核酸内切酶Cas9。但是,应用此技术的主要问题是开发有效的CRISPR/CAS9传递系统。共识依赖于用纳米颗粒(NP)代表的非病毒输送系统的使用。壳聚糖是一种安全的生物聚合物,用于几种生物医学应用,尤其是基因递送的NP。的确,它在基因递送系统的背景下显示了几个优点,例如,其骨架上有带正电荷的氨基组的存在可以与带负电荷的核酸形成稳定的纳米复合物建立静电相互作用。但是,其主要局限性包括生理pH值的溶解度差和有限的缓冲能力,可以通过功能化其化学结构来克服。本评论对基于壳聚糖的CRISPR/CAS9传递系统的不同方法进行了批判性分析以及未来发展的建议。