向量微积分:回顾向量代数的概念、标量和向量函数、梯度散度和旋度、方向导数、保守向量场、无旋函数和螺线函数。线积分、线积分的路径独立性、曲面积分的概念、格林定理、斯托克斯定理和散度定理。
课程成果:完成本课程后,学生将能够 CO1 – 识别无穷级数收敛在工程方面的应用。 CO2 – 理解方向导数、无旋和螺线管矢量场的概念。 CO3 – 培养应用适当工具/方法提取工程问题解决方案的能力。 CO4 – 结合理论分析获得的解决方案。 CO5 – 评估从实数到复数域的数学问题。 CO6 – 评估格林定理、斯托克斯定理和散度定理的问题。 文本/参考书:
ME536:非线性系统动力学详细教学大纲(核心课程) MH503:高等工程数学(3-0-0-6)先修课程 NIL 线性代数:矩阵代数;基础、维度和基本子空间;通过直接方法求解 Ax = b;正交性和 QR 变换;特征值和特征向量、相似变换、奇异值分解、傅里叶级数、傅里叶变换、FFT。向量代数与微积分:基本向量代数;曲线;梯度、除数、旋度;线、表面和体积积分、格林定理、斯托克斯定理、高斯散度定理。微分方程:ODE:齐次和非齐次方程、Wronskian、拉普拉斯变换、级数解、弗罗贝尼乌斯方法、Sturm-Liouville 问题、贝塞尔和勒让德方程、积分
拉格朗日乘数法。(10)数列和级数:数列、数列的极限及其性质、正项级数、收敛的必要条件、比较检验法、达朗贝尔比率检验法、柯西根检验法、交错级数、莱布尼茨规则、绝对收敛和条件收敛。(6)积分学:积分学的平均值定理、反常积分及其分类、Beta 函数和 Gamma 函数、笛卡尔和极坐标中的面积和长度、笛卡尔和极坐标中的旋转立体的体积和表面积。(12)多重积分:二重积分、二重积分的求值、三重积分的求值、积分阶数的变换、变量的变换、二重积分的面积和体积、三重积分的体积。 (10)向量微积分:向量值函数及其可微性、线积分、面积积分、体积积分、梯度、旋度、散度、平面格林定理(包括矢量形式)、斯托克斯定理、高斯散度定理及其应用。 (10)教材,
单个变量的函数:Rolle的定理和Lagrange的平均值定理(MVT),Cauchy的MVT,Taylor's和Maclaurin的系列,Asymptotes&Curvature(Cartesian,Polar,极性形式)。(8) Functions of several variables: Function of two variables, Limit, Continuity and Differentiability, Partial derivatives, Partial derivatives of implicit function, Homogeneous function, Euler's theorem and its converse, Exact differential, Jacobian, Taylor's & Maclaurin's series, Maxima and Minima, Necessary and sufficient condition for maxima and minima (no proof), Stationary points, Lagrange's乘数的方法。(10)序列和序列:序列,序列的限制及其性质,一系列积极术语,收敛的必要条件,比较测试,D Alembert的比率测试,Cauchy的根测试,交替的序列,Leibnitz的规则,绝对和条件收敛。(6)积分计算:积分计算的平均值定理,不正确的积分及IT分类,beta和γ功能,在皇家和极地坐标,伦理固体的体积和表面积,皇家和极地的体积和表面积的面积和长度通过双重整合的体积,体积作为三个积分。(10)矢量计算:矢量值及其不同,线路积分,表面积分,体积积分,梯度,卷曲,弯曲,散射,格林定理(包括向量形式),Stokes的定理,Gauss的Divergence定理及其应用。(10)
CO1:应用矩阵理论和向量微积分的概念。 CO2:开发求解微分方程的分析方法。 CO3:应用有限差分和有限体积法求解微分方程。 CO4:在工程问题中实施分析和计算技术。矩阵线性方程组的数学运算、一致性 - 向量空间、线性相关性和独立性、基础和维度 - 线性变换 - 投影 - 正交矩阵、正定矩阵、特征值和特征向量、矩阵的相似性、对角化、奇异值分解。矢量场、线积分、曲面积分 - 变量变换、格林定理、斯托克斯定理和散度定理。常微分方程 (ODE)、初值问题及其求解技术、二阶常微分方程的通解、齐次和非齐次情况、边界值问题、Sturm-Liouville 问题和 ODE 系统 - 偏微分方程 (PDE)、柯西问题、特征法、二阶 PDE 和分类、边界条件类型、热、波和拉普拉斯方程的公式和解。使用 MATLAB/python 进行 ODE 和 PDE 的数值实现 - ODE:初值问题:一阶和高阶方法、边界值问题、射击方法、数据拟合、最小二乘 - 标量传输方程的一阶和高阶数值方法、热、波和拉普拉斯方程的有限差分方法。与该计划相关的案例研究:地震波的声学模型、非均匀介质中的扩散、两个平板之间的流动发展、焊接问题、固体材料中的热传导、扩散的相场解(Allen Cahn 1D 解)、两个或多个分子与 Lennard-Jones 势相互作用的解等。
向量微积分:梯度、散度和旋度,它们的物理意义和恒等式。线、表面和体积积分。格林定理、散度陈述和斯托克斯定理、应用。傅里叶级数:周期函数的傅里叶级数、欧拉公式。奇函数、偶函数和任意周期函数的傅里叶级数。半程展开。傅里叶积分。正弦和余弦积分、傅里叶变换、正弦和余弦变换。谐波分析。偏微分方程:基本概念、仅涉及一个变量的导数的方程解。通过指示变换和变量分离求解。用分离变量法推导一维波动方程(振动弦)并求其解。达朗贝尔波动方程解。用高斯散度定理推导一维热方程并求一维热方程解。用分离变量法求解。数值方法:一阶和二阶导数(常导数和偏导数)的有限差分表达式。边界值问题的解,二阶偏微分方程的分类。用标准五点公式求拉普拉斯和泊松方程的数值解,用显式方法求热和波动方程的数值解。参考文献: 1.Kreyszig, Erwin,《高级工程数学》,John Wiley & Sons,(第 5 版),2010 年。2.3.S. S. Sastry,《数值分析入门方法》(第 2 版),1990 年,Prentice Hall。B. S. Grewal,《高等工程数学》,1989 年,Khanna Publishers 4。Murray R. Spiegel,《矢量分析》,1959 年,Schaum Publishing Co.
总课时:52 课程成果: CO1:应用矩阵理论和向量微积分的概念 CO2:开发求解微分方程的分析方法 CO3:应用有限差分和有限体积方法求解微分方程 CO4:在工程问题中实施分析和计算技术 矩阵的数学运算、线性方程组、一致性、向量空间、线性相关和独立性、基和维数、线性变换、投影、正交矩阵、正定矩阵、特征值和特征向量、矩阵的相似性、对角化、奇异值分解、矢量场、线积分。曲面积分、变量变换、格林定理、斯托克斯定理和散度定理 常微分方程 (ODE)、初值问题及其求解技术、二阶常微分方程的通解、齐次和非齐次情况、边界值问题、Sturm-Liouville 问题和 ODE 系统。偏微分方程 (PDE)、柯西问题、特征法、二阶 PDE 和分类、边界条件类型、热、波和拉普拉斯方程的公式和解。使用 MATLAB/Python 进行 ODE 和 PDE 的数值实现:ODE:初值问题:一阶和高阶方法、边界值问题、射击方法、数据拟合、最小二乘、标量传输方程的一阶和高阶数值方法、热、波和拉普拉斯方程的有限差分方法。与该项目相关的案例研究:地震波的声学模型、非均匀介质中的扩散、两个平板之间的流动发展、焊接问题、固体材料的热传导、扩散的相场解(Allen Cahn 1D 解)、具有 Lennard-Jones 势的两个或多个分子相互作用的解等。参考文献:[1] Lay, DC, Lay, SR 和 McDonald, JJ,2016 年,《线性代数及其应用》。Pearson,美国。[2] Kreyszig, E.,2011 年,《高等工程数学》,Wiley,印度。[3] Simmons, GF,2011 年,《微分方程及其应用和历史记录》,McGraw Hill,美国。[4] Sneddon,印第安纳州,2006 年,《偏微分方程元素》,多佛,美国。 [5] Rao, KS,2010 年,《偏微分方程简介》,Prentice-Hall,印度。[6] Butcher, JC,2003 年,《常微分方程的数值方法》,Wiley,美国。[7] Thomas, JW,2013 年,《数值偏微分方程:有限差分法》,Springer,瑞士。[8] Versteeg, HK 和 Malalasekera, W.,2007 年,《计算流体力学简介:有限体积》
MH1802 科学微积分 本课程旨在让学生掌握 数学知识和分析技能,使他们能够应用微积分技术(以及他们现有的数学技能)来解决适用的科学问题; 数学阅读技能,使他们能够阅读和理解基础和流行科学和工程文献中的相关数学内容;以及 数学交流技能,使他们能够有效和严格地向数学家、科学家和工程师介绍他们的数学思想。内容基础 (BAS) 数字类型;函数和图形;常用函数及其图形;重要的代数、三角、对数和指数恒等式;基本复数。微积分 (DIF) 极限;微分;微分技术;微分的应用;基本偏导数。积分 (INT) 积分;积分技术;对数、指数和反三角函数的微积分;积分的应用;微分方程 (DE) 基础;一阶常微分方程;二阶常微分方程;级数、序列和微分方程。MH1812 离散数学 学习目标 本课程介绍数学和计算机科学中常用的离散数学基本概念。内容 - 计数、排列和组合、二项式定理 - 递归关系 - 图、路径和电路、同构 - 树、生成树 - 图算法(例如最短路径、最大流)及其计算复杂度、大 O 符号 MH2100 微积分 III 学习目标 这是微积分系列中的最后一门课程。本课程介绍多变量微积分。内容 参数方程、极坐标。向量值函数、向量值函数微积分、立体解析几何。多变量函数、极限、连续性、偏导数、可微分性和全微分、链式法则、隐函数定理。方向导数、梯度、拉格朗日乘数。二重积分、表面面积、三重积分。线积分、格林定理、曲面积分、高斯散度定理、斯托克斯定理。