专门为猫与狗数据集和与铁路相关的数据集。目标是解决公共和专业领域中复杂背景和多角度摄影所带来的挑战。剪辑 - 取回剪辑模型的图像编码器作为其核心体系结构,提取图像特征,并构建一个相似性矩阵,以与不同图像之间的相似性分数。基于排序的结果,它显示最相关的图像。为了验证剪辑 - 恢复的鲁棒性和稳定性,我们进行了比较研究和干扰抗性实验。实验结果显示出显着的进度改进,表明了出色的图像检索效果。具体来说,剪辑回程有效地处理复杂的背景和构成不同数据集的变化,从而提供准确有效的检索服务。
图 1 : AI 带来 OA 功能的重构 ......................................................................................... 3 图 2 :微软发布 Copilot .................................................................................................. 3 图 3 :百度“如流” ........................................................................................................ 3 图 4 : Copilot 根据要求起草邮件 .................................................................................... 4 图 5 : Copilot 提炼邮件内容 ........................................................................................... 4 图 6 : Copilot 对会议内容进行总结并支持提问 .............................................................. 5 图 7 : Copilot 支持会议内容的实时总结和提问 .............................................................. 5 图 8 : Copilot 对客户关注的领域进行扫描 ..................................................................... 5 图 9 : Copilot 根据销售资料提供竞品分析建议 .............................................................. 5 图 10 : Copilot 整理各类资料协作对工作内容进行梳理 ................................................. 6 图 11 : Copilot 为接下来的会议准备相关资料 ................................................................ 6 图 12 :泛微智能办公平台框架图 .................................................................................... 7 图 13 :泛微智能办公平台前端技术 ................................................................................ 7 图 14 :泛微小 e 助手查询业绩 ....................................................................................... 7 图 15 :泛微小 e 助手智能填单 ....................................................................................... 7 图 16 :小致语音助手技术框架 ........................................................................................ 8 图 17 :小致语音助手使用示例 ........................................................................................ 8
设计体系结构说明类DesignConfig(new Constellation(Nocparams(topology =(),ChannelParamgen =(),RoutingRelation =())…)++ new Rockettile()++ new L2Banks()
在本文中,我们提出了一个可解释的脑图对比学习框架,旨在通过无监督的方式学习脑图表征,以用于疾病预测和病因分析。我们的框架包含两个关键设计:首先,我们利用可控的数据增强策略来扰动不重要的结构和属性特征以生成脑图。然后,考虑到健康和患者脑图的差异较小,我们引入硬负样本评估来加权对比损失的负样本,这可以学习更具判别性的脑图表征。更重要的是,我们的方法可以观察到显著的大脑区域和连接以用于病因分析。我们在三个真实的神经影像数据集上进行了疾病预测和可解释分析实验,以证明我们框架的有效性。
摘要 - 目的:在大多数现有的大脑计算机界面(BCI)系统中,通常会忽略脑电图频谱动力学中隐藏的拓扑信息。此外,脑电图与其他信息性的大脑信号(例如功能性近红外光谱(FNIRS))的系统多模式融合尚未得到充分研究,以增强BCI系统的性能。在这项研究中,我们利用一系列基于图形的EEG特征来研究其在运动假想(MI)分类任务上的性能。方法:我们首先根据复杂的Morlet小波时间频率图提取用户多通道EEG信号的幅度和相位序列,然后将它们转换为无向图以提取EEG EEG拓扑特征。然后通过阈值方法选择基于图的特征,并与FNIRS信号的时间特征融合在一起,每个特征是由最小绝对收缩和选择算子(Lasso)算法选择的。然后,通过线性支持向量机(SVM)分类将融合功能分类为MI任务与基线。结果:与在频带过滤的时间eeg信号上构建的图相比,EEG信号的时频图提高了MI分类精度约5%。我们提出的基于图的方法还显示出与基于功率谱密度(PSD)的经典脑电图特征相当的性能,但是标准偏差较小,显示出在实用BCI系统中潜在使用的稳健性。关键字 - 大脑计算机界面(BCI),EEG-FNIRS数据融合,特征选择,图理论。我们的融合分析显示,与最高的FNIRS相对于单个模态效果相关时,与最高的FNIR相比,仅EEG的最高平均准确性仅为17%,而仅EEG的最高平均精度仅为最高的平均准确性,而最高的FNIRS的平均准确性仅为3%。显着性:我们的发现表明,通过使运动假想推理更加准确,更强大,利用混合BCI系统中基于图的特征的提议数据融合框架的潜在用途。
3D对应关系,即一对3D点,是计算机视觉中的一个有趣概念。配备兼容性边缘时,一组3D相互作用形成对应图。此图是几个最新的3D点云注册方法中的关键集合,例如,基于最大集团(MAC)的一个。但是,其特性尚未得到很好的理解。因此,我们提出了第一项研究,该研究将图形信号处理引入了对应图图的域。我们在对应图上利用了广义度信号,并追求保留此信号的高频组件的采样策略。为了解决确定性抽样中耗时的奇异价值分解,我们采取了随机近似采样策略。因此,我们方法的核心是对应图的随机光谱采样。作为应用程序,我们构建了一种称为FastMAC的完整的3D注册算法,该算法达到了实时速度,而导致性能几乎没有下降。通过广泛的实验,我们验证了FastMac是否适用于室内和室外基准。例如,FastMac可以在保持高recistra-
很长一段时间以来,土著社会被排除在数学史领域(D'Ambrosio,1985,2001)。直到几十年前,科学的历史学家和哲学家确实抛弃了他们的研究领域,经常赋予口头传统的小规模和/或土著社会。The prevalence of the evolutionist (Tylor, 1871) and “prelogical thought” (Lévy-Bruhl, 1910) theories, arguing that these peoples had a lesser ability to abstract and generalize than ours, appears to have durably impeded the recognition of genuine mathematical practices carried out in the various indigenous societies worldwide (Vandendriessche,即将到来的2021)。在20世纪下半叶初,在这个问题上发生了重大的认识论变化,这是通过人类学家克劳德·莱维·斯特劳斯(ClaudeLévi-Strauss)的工作促进的。后者的认识论破裂似乎促使研究(在1970年代)的发展现在通常被认为是建立民族心理学的开创性作品(Vandendriessche&Petit,2017年)。这个新生的跨学科研究领域的当前发展有助于进一步扩大我们对数学知识及其历史的看法,同时在图片中包括所有在社会群体/社会中表现出的数学特征的所有活动,通常不被认为是这样的。在地球的各个土著社会中,数学并不是通常作为自治知识类别。(Rivers&Haddon 1902,Deacon&Wedgwood,1934年,Austern 1939,Lévi-Strauss 1947,Pinxten等人。然而,正如许多关于“传统”社会的民族志都表明,在整个20世纪,在其各种实践中(例如日历或装饰品的制作,营地和住宅的建立,纺织品生产,导航,接航,游戏,游戏,游戏,游戏,1983,Gladwin 1986,Mackenzie 1991,Desrosiers,2012,Galliot 2015…)。因此,eTnomecatians的一个主要认识论问题是确定其中一些实践与数学活动以及如何相关的程度。为了避免受到“数学一词的西方涵义”的约束,玛西娅·阿什尔(Marcia Ascher,1935-2013)是1990年代民族心理学的创始人之一,引入了“数学思想”的概念。数学思想被定义为涉及“数字,逻辑和空间配置,尤其是这些思想在系统或结构中的布置”的想法(Ascher,1991:3)。Ascher基于使用建模工具的使用开发了一种方法,旨在揭示与