淹没胁迫是由于在水稻生长或幼苗期发生山洪时水稻植株完全被淹没,可持续长达 2 周。被淹没的植物会遭遇能量危机,可能导致整株死亡,从而降低粮食产量 ( Yuan 等,2023 )。近年来,在雨养地区,淹没变得更加频繁,有时甚至会持续 20 天以上,这可能是由于气候变化所致 ( Shu 等,2023 )。FR13A 是一种印度耐洪品种,由传统地方品种 Dhalputtia 通过单粒选择衍生而来,可以在山洪中存活 2 周或更长时间 ( Xu 和 Mackill,1996;Xu 等,2006 )。其他几个地方品种表现出很强的耐洪能力,但这一特性在育种中尚未得到充分利用 ( Ismail 和 Mackill,2014 )。然而,在所有地方品种中,FR13A
以棉花为例,引入从土壤细菌苏云金芽孢杆菌 (BT) 中提取的 cry1Ac 和 cry2Ab 基因,可使本地棉花植株产生内毒素,以自然方式对抗棉红铃虫。BT 棉花利用这一优势帮助农民自然对抗棉红铃虫,这种虫害是棉农最常见的害虫。基因组编辑和基因工程的基本区别在于,前者不涉及引入外来遗传物质,而后者则涉及。在农业方面,这两种技术都旨在产生产量更高、更能抵抗生物和非生物胁迫的变种。在基因工程出现之前,这种品种改良是通过选择性育种来完成的,即仔细地将具有特定性状的植物杂交,以在后代中产生所需的性状。基因工程不仅使这项工作更加精确,而且还使科学家能够更好地控制性状的发展。
本报告介绍了一项研究结果,该研究旨在探讨人工智能 (AI) 算法是否能通过使用安装在 Svegros 的一个罗勒农场上空的普通监控摄像头拍摄的图像来估算植物的高度,以及效果如何。该项目具有重要的经济意义,因为太高的罗勒植株不适合商店的货架,而太小的植株又会让顾客失望。这是 Svegro 一项更大运动的一部分,该运动旨在实现植物生长自动化监测和护理,降低能耗并减少浪费。为了测量高度,在摄像头下方的传送带上移动的植物后面放置了标尺(Robel 杆),这样就可以根据 Robel 杆上未被植物覆盖的可见线的数量手动确定植物的高度。研究问题是设计一种基于人工智能的解决方案来预测植物上方可见的线数。经过两个月的图像收集和手动注释后,使用来自罗勒田的单个 Robel 杆的图像训练了三个不同复杂度的卷积神经网络 (CNN) 模型。使用 Grad-CAM 获得的结果表明,网络不会学习数线,而是将叶子的大小和形状与高度关联起来。最佳得分是平均绝对误差 0.74 和均方误差 0.83,其中 MAE 为 2.53 和 MSE 为 11.11,这对应于仅预测数据集中值。这是使用 EfficientNet0B 实现的。将结果与人类的表现进行了比较,结果显示人类的表现仍然更好,但由于数据嘈杂,结果令人印象深刻,分数超出了 Svegro 团队的预期,因此最终模型现在在那里使用。实验还表明,即使训练图像中没有 Robel 杆,也可以获得相当好的结果,这意味着 Svegro 团队可以停止布置 Robel 杆,但精度会略有下降。提出了一些改进建议,例如改变 Robel 杆的设计,以帮助未来的研究以更高的精度完全自动化该过程。
农杆菌。我们再生了 76 株独立的转基因植物,并检查了单个花序的育性(补充图 1)。八株转基因植物产生了突变花。根据表型,突变花可分为两种类型:花瓣状雄蕊型(PST),具有花瓣状雄蕊和异常花药,以及败育雄蕊型(AST),花丝缩短,花药开裂异常(图 1c)。与野生型花相比,通过 TCC 染色和随后的显微镜观察,PST 和 AST 花的花粉数量较少,且活力为零(图 1d)。在 8 株发生突变花的转基因植株中,4 株(Nmu44、Nmu52、Nmu70 和 Nmu80)表现出正常花和 PST 花,2 株(Nmu43 和 Nmu46)表现出正常花和 AST 花,这 6 株均为嵌合突变体,而 2 株(Nmu58 和
暴露于高浓度 NaCl 的绿豆植株的生长、产量、生理参数、叶绿素含量、离子吸收(Na + 较少和 K + 离子较多)和养分含量均有所变化,冬季作物比夏季作物表现出更高的敏感性。然而,引入 B. pseudomycoides 产生了明显的缓解效果,这反映在植物生长、产量属性、生理参数、离子吸收和养分含量的改善上。研究结果强调了绿豆冬季和夏季作物对 NaCl 胁迫的不同反应,并强调了耐盐细菌作为减少盐分引起损害的可持续解决方案的潜力。这项研究为制定能够减轻盐分胁迫对不同季节绿豆作物的不利影响的弹性农业实践提供了宝贵的见解,从而提高了易受土壤盐渍化影响地区的粮食安全。
摘要 本研究的目的是开发和评估一种基于 SPOT-5 影像的面向对象香蕉种植园制图方法,并将这些结果与手动从高空间分辨率机载影像中划定的香蕉种植园进行比较。首先通过使用光谱和高程数据进行大规模空间制图来确定耕地。在耕地内,除了光谱信息外,还包括图像共现纹理测量和上下文关系,香蕉种植园与其他土地覆盖类别的分离增加。结果表明,需要 � 2.5 m 的像素大小才能准确识别香蕉种植园内的行结构,从而能够基于纹理信息与其他作物进行基于对象的分离。经过分类后视觉编辑后,用户和生产者绘制香蕉种植园的准确率分别从 73% 和 77% 提高到 94% 和 93%。结果表明,所使用的数据和处理技术为绘制香蕉植株和其他种植园作物的地图提供了一种可靠的方法。
摘要:GT2-LIKE1(GTL1)基因是气孔发育的负调控基因,它调节植物气孔的数量。CRISPR/Cas9 系统已用于改造OsGTL1启动子。本研究旨在筛选出带有OsGTL1启动子改造的无Cas9水稻。设计Cas9特异引物对8个T 3 水稻品系的所有分蘖进行Cas9筛选。只有一个T 3 品系在所有分蘖中都是无Cas9的,而8个品系中有3个品系的所有分蘖中都有Cas9。从5个独立品系中可获得无Cas9分蘖的种子。改造植株与野生型(WT)的叶绿度、每株分蘖数和每株叶子数无显著差异。然而,8个改造品系中有7个品系的叶片显著小于WT。一些无Cas9植物中OsGTL1启动子的核苷酸序列揭示了OsGTL1启动子的修饰,包括在目标区域内的小的缺失、插入和大的缺失。
陆稻接种或混合接种多功能根际细菌可促进植株生长,特别是根系生长。因此,本研究旨在评价接种或混合接种固氮螺菌和芽孢杆菌对陆稻早期发育的影响。试验采用完全随机设计,设4个处理,10次重复,共40个地块。处理为:1)Ab-V5(巴西固氮螺菌),2)BRM 63573(芽孢杆菌),3)Ab-V5 + BRM 63573 混合接种,4)对照(不含根际细菌)。接种或混合接种多功能根际细菌Ab-V5和BRM 63573对陆稻初期发育有积极作用。接种分离物 BRM 63573 对根长、茎部和总生物量有显著影响,而接种分离物 Ab-V5 对根长和根系及总生物量的产生有显著影响。共接种处理对直径、体积、总表面积、根系生物量和总生物量等变量有显著影响。对照处理(无多功能根际细菌)
摘要。红樱桃是落叶野生乔木,原产于中国,也用作观赏树。2018年至2023年3月下旬至12月,浙江省宁波市四明山(29°71'08”N,121°15'12”E)的红樱桃植株受到白粉病的严重危害。该病害每年3月下旬首次出现,特征是在幼叶近轴面出现白色、不规则的菌丝斑块。7月至8月,叶片受害部位的白粉病菌落消失,只剩下不规则的黄褐色斑点。9月病害再次发生,持续到12月下旬。12月在叶片上观察到含有子囊和子囊孢子的开壳囊。对开壳囊的形态分析表明病原菌为Podosphaera sp.。基于内部转录间隔区 (ITS) 区域 (引物 ITS4/ITS5) 的分子鉴定证实了病原菌为 Podosphaera prunigena 。接种试验证实了 Koch 法则,在接种的叶片组织中鉴定出相同的病原菌。本研究首次证实中国 P. rufoides 上的白粉病是由 P. prunigena 引起的。
以CRISPR-Cas9为代表的基因组编辑技术已广泛应用于基因功能分析、基因治疗、作物改良等多个生物领域。然而面对真核生物基因组的复杂性,CRISPR-Cas9基因组编辑工具表现出编辑效率不稳定、在不同靶位点差异性大等问题,进一步提高CRISPR-Cas9系统在全基因组范围内的编辑效率具有重要意义。本研究在前期单转录单元基因组编辑系统(STU-SpCas9)的基础上,利用泛素相关结构域(UBA)增强Cas9蛋白的稳定性,构建了三种Cas9-UBA融合系统(SpCas9-SD01、SpCas9-SD02、SpCas9-SD03)。选取水稻OsPDS、OsDEP1和OsROC5基因的4个不同靶位点,对水稻原生质体和稳定转化水稻植株的基因组编辑效率进行评价,结果表明UBA结构域的融合不影响Cas9蛋白的切割方式,且能有效提高STU-SpCas9在靶位点的编辑效率。该新型CRISPR-Cas9-UBA系统为提高CRISPR-Cas9在植物中的基因组编辑效率提供了新的策略和工具。