增强了极端热量,这是温度时间序列[1]的创纪录高数,损害人类健康,福利和基础设施的损害以及生态系统[2,3]。热量的影响随温度和其他热量指数非线性增加[4]。因此,重要的是要准确预测有关当前天气动态和持续气候变化的信息的极端风险[5]。通常,极端温度是使用统计极端价值理论建模的,该理论可以渐近地描述最极端值的分布,这是从任何广泛的概率分布中提取的足够大数量集中的分布[6]。通常通过使用电台观测值或天气和气候模型输出的年度最高温度(表示为TXX [7])的时间序列来实现这一目标。基于极值理论,假定TXX值是从广义极值分布(GEVD)[8]中生成的。使用最大似然或其他合适的方法从TXX数据估算GEVD参数后,可以估计温度超过任何指定阈值的可能性[9-12]。为了说明气候变化的影响,GEVD通常被认为是非平稳的,其位置参数将其模型为全球平均温度的线性函数,并且可能是其他协变量[13]。极端温度已使用类似的归因研究方法进行了建模,该方法旨在量化观察到的最近的热波的风险的人为升高[14-17]。由世界天气归因协作开发的此类归因研究的标准方法是估计of of of of of of of temere热量的可能性,假设TXX或其他基于温度的时间序列遵循GEVD,将位置参数作为全球平均温度的线性函数。将这种概率与从同一统计模型中得出的概率进行比较,当时全球平均温度设置为工业化前基线,而人为变暖增加了因素(概率比),从而增加了观察到极端的可能性[18,19]。
有人提出,大脑使用概率生成模型来最佳地解释感官信息。这一假设已在不同框架中形式化,重点是解释不同的现象。一方面,经典预测编码理论提出了如何通过采用局部突触可塑性的神经元网络来学习概率模型。另一方面,神经采样理论已经证明了随机动力学如何使神经回路能够表示环境潜在状态的后验分布。这些框架通过变分过滤结合在一起,将神经采样引入预测编码。在这里,我们考虑一种用于静态输入的变分过滤变体,我们将其称为蒙特卡罗预测编码 (MCPC)。我们证明,预测编码与神经采样的结合会产生一个使用局部计算和可塑性学习精确生成模型的神经网络。MCPC 的神经动力学在存在感官输入的情况下推断潜在状态的后验分布,并可以在没有感官输入的情况下生成可能的输入。此外,MCPC 还捕捉了感知任务期间神经活动变化的实验观察结果。通过结合预测编码和神经采样,MCPC 可以解释之前由这些单独框架解释的两组神经数据。
量子生成建模(QGM)依赖于准备量子状态并从这些状态中生成样品,作为隐藏或已知的概率分布。作为来自某些类别的量子状态(电路)的分布本质上很难经典样本,QGM代表了量子至上实验的出色测试床。此外,生成任务与工业机器学习应用越来越重要,因此QGM是证明实用量子优势的有力候选人。但是,这要求对量子电路进行培训以代表与工业相关的分布,并且相应的培训阶段在实践中为当前的量子硬件具有广泛的培训成本。在这项工作中,我们根据接受有效梯度计算的特定类型的电路提出了对QGM的经典培训方案,同时仍然难以采样。特别是我们考虑瞬时量子多项式(IQP)电路及其扩展。在时间复杂性,稀疏性和抗调解属性方面显示了它们的经典模拟性,我们开发了一种经典的可拖动方式来模拟其输出概率分布,从而使经典的培训允许经典培训到目标概率分布。与使用经典采样时不同,来自IQP的相应量子采样可以有效地进行。我们使用概率分布在常规台式计算机上最多30个QUAT的概率分布来证明IQP电路的端到端训练。当应用于工业相关的分布时,这种经典培训与量子采样的组合代表了在嘈杂的中间规模量子(NISQ)时代获得优势的途径。
摘要:材料与结构的疲劳寿命具有较大的离散性,在工程设计中通常被考虑。为了减少主观不确定性的引入,获得合理的概率分布,本文提出了一种基于最大熵原理的疲劳寿命概率分布识别计算方法。利用疲劳寿命的前四个统计矩来制定最大熵原理优化问题的约束条件。还提出了一种精确的算法来寻找最大熵分布中的拉格朗日乘数,从而避免了求解方程组时出现的数值奇异性。用两个拟合指标来衡量所提方法的拟合优度。通过文献中的两组疲劳数据集证明了所提方法的合理性和有效性。并对所研究的疲劳数据集进行了所提方法与对数正态分布和三参数威布尔分布的比较。