摘要 目的。脑机接口 (BCI) 允许感觉运动障碍的受试者与环境互动。依赖于事件相关电位 (ERP) 等脑电信号的非侵入式 BCI 已被证实是时空分辨率和患者影响之间的可靠折衷,但由于便携性和多功能性而受到限制,因此无法广泛应用。在这里,我们描述了一种使用消费级便携式耳机脑电图 Emotiv EPOC + 的深度学习增强误差相关电位 (ErrP) 辨别 BCI。方法。我们在视觉反馈任务中记录并辨别了 14 名受试者的在线和在线 ErrP。主要结果:我们实现了高达 81% 的在线辨别准确率,与使用生成对抗网络或训练数据和极简计算资源的内在模式函数增强进行深度学习获得的准确率相当。意义。我们的 BCI 模型有可能将 BCI 的范围扩展到更便携、人工智能增强、更高效的接口,从而加速这些设备在科学实验室受控环境之外的常规部署。
心脏病占全球死亡人数的30%。早期干预和心血管异常的检测可以预防这种死亡。当前的研究提出了一种新的方法,该方法将卷积神经网络(CNN)和长期记忆(LSTM)结合在一起,以预测人心脏功能中异常。机器学习模型用于检测来自ECG和PCG信号的异常。这项研究中使用了两个突出的数据集,即Physionet 2016和Physionet 2017,用于培训和测试开发的机器学习模型。经验模式分解已用于预处理心脏声音信号和心电图信号。使用EMD可以将信号分解为其基本振荡组件,称为固有模式函数(IMF)。通过将信号与噪声比值与原始和过滤的PCG信号进行比较,可以评估该方法在降低噪声方面的有效性。特征提取是通过生成DeNO.信号的缩放图完成的。缩放图是通过连续小波变换(CWT)获得的。此后,一种称为CNN-LSTM的混合深度学习技术用于分类和训练模型。所提出的模型在分类和检测人心脏功能异常方面的精度为86%。
运动伪影降低了脑电图(EEG)信号中信息质量。在这项研究中,我们开发了一种有效的方法来通过使用经验小波变换(EWT)技术来减轻脑电图信号中的运动伪像。首先,我们将EEG信号分解为称为固有模式函数(IMFS)的窄带信号。这些IMF进一步处理以抑制工件。在我们的第一种方法中,主成分分析(PCA)用于抑制这些分解的IMF中的噪声。在第二种方法中,使用方差度量识别具有嘈杂成分的IMF,然后将其删除以获得伪影抑制的脑电图信号。我们的实验是在EEG信号的公开生理学数据集上进行的,以证明我们方法在抑制运动伪像的有效性。更重要的是,基于IMF的基于IMF的方法比基于EWT-PCA的方法提供了明显更好的性能。此外,基于IMF的方法的方法比基于EWT-PCA的方法更有效。我们提出的基于IMF变量的方法达到了28.26 dB的平均信号与噪声比(𝛥 snR),并超过了用于移动伪像的现有方法。
运动伪影会降低脑电图 (EEG) 信号中的信息质量。在本研究中,我们开发了一种有效的方法,通过使用经验小波变换 (EWT) 技术来减轻 EEG 信号中的运动伪影。首先,我们将 EEG 信号分解为称为固有模式函数 (IMF) 的窄带信号。这些 IMF 经过进一步处理以抑制伪影。在我们的第一种方法中,采用主成分分析 (PCA) 来抑制这些分解后的 IMF 中的噪声。在第二种方法中,使用方差测量识别具有噪声成分的 IMF,然后将其去除以获得伪影抑制的 EEG 信号。我们的实验是在公开的 Physionet EEG 信号数据集上进行的,以证明我们的方法在抑制运动伪影方面的有效性。更重要的是,基于 IMF 方差的方法比基于 EWT-PCA 的方法提供了更好的性能。此外,基于 IMF 方差的方法在计算上比基于 EWT-PCA 的方法更有效。我们提出的基于 IMF 方差的方法实现了 28.26 dB 的平均信噪比 (𝛥 SNR),并且超越了现有的运动伪影去除方法。
内部语音是一种自我指导的对话形式,它在认知发展,语音监测,执行功能和心理病理学中起着重要作用。尽管对其现象学,发展和功能的知识越来越多,但对内部语音的科学研究的方法仍然存在差异,并且在很大程度上是不整合的。脑电图(EEG),它是一种非侵入性脑部计算机界面(BCI)的方法,为内部语音研究带来了新的选择。由于脑电图的优势,越来越多的研究与内部语音有关。在此贡献中,内部语音中表达的不同单词通过应用EEG信号和支持向量机(SVM)来区分。使用向公众开放的“大声思考”数据集的脑电图数据。在实验中,从位于头顶上的128个传感器中获取了许多脑电图数据。因此,在第一个步骤中填写数据。之后,选定的数据通过经验模式分解(EMD)分解为各种固有模式函数(IMFS)。此外,使用希尔伯特变换来转换IMF,以检查适合区分内部语音的脑波带。最后,IMF的单个或组合由支持向量机(SVM)与各种内核进行分类。使用最合适的IMF和内核时,每个主题方案的平均结果为:F-评分:99.24%,准确性:99.24%和标准偏差(SD):0.95。所有主题方案的最佳结果是:F-评分:99.67%,准确性:99.66%和标准偏差(SD):0.27。获得的结果表明,所提出的方法可以很好地与内部语音差异。
内部语音是一种自我指导的对话形式,它在认知发展,语音监测,执行功能和心理病理学中起着重要作用。尽管对其现象学,发展和功能的知识越来越多,但对内部语音的科学研究的方法仍然存在差异,并且在很大程度上是不整合的。脑电图(EEG),它是一种非侵入性脑部计算机界面(BCI)的方法,为内部语音研究带来了新的选择。由于脑电图的优势,越来越多的研究与内部语音有关。在此贡献中,内部语音中表达的不同单词通过应用EEG信号和支持向量机(SVM)来区分。使用向公众开放的“大声思考”数据集的脑电图数据。在实验中,从位于头顶上的128个传感器中获取了许多脑电图数据。因此,在第一个步骤中填写数据。之后,选定的数据通过经验模式分解(EMD)分解为各种固有模式函数(IMFS)。此外,使用希尔伯特变换来转换IMF,以检查适合区分内部语音的脑波带。最后,IMF的单个或组合由支持向量机(SVM)与各种内核进行分类。使用最合适的IMF和内核时,每个主题方案的平均结果为:F-评分:99.24%,准确性:99.24%和标准偏差(SD):0.95。所有主题方案的最佳结果是:F-评分:99.67%,准确性:99.66%和标准偏差(SD):0.27。获得的结果表明,所提出的方法可以很好地与内部语音差异。
摘要:本研究的目的是以边际频率(MF)和Hilbert Spectrum(HS)的形式提取能量特征分布,以固有模式函数(IMF)域(基于基于Hilbert – Huang huang thime)的实际运动(AM)基于移动(AM)基于运动(AM)的(AM)基于运动图像(MI)的电脑(EEG)信号(HILBERT-HUANG TEMISTIC)(HHT)的频率(HHT)。因此,探索了Delta(0.5-4 Hz)节奏中的F5和F6 EEG信号TF能量特征分布。我们提出了基于IMF的功能(RF)基于IMFRFERDD(IMFRF能量验证的分布密度),IMFRFMFERDD(IMFRF MF能量验证的分布密度)和IMFRFHSERDD(IMFRF HS Enperion Refere for Speption MIM MIM MIM MIM MIME)的参数and HHH HH HH HH HH三角洲节奏的信号。AM和MI任务涉及同时开放的第一个和脚,以及同时关闭的第一和脚。提取八个样本(总计32个),持续时间为1000毫秒,以分析f5am,f5MI,f6am和f6mi EEG信号,这些信号分解为五个IMF和一个RF。IMF4的最大IMFRFERDD值分别为F5AM,F5MI,F6 AM和F6MI的3.70、3.43、3.65和3.69。在增量节奏中,IMF4的最大IMFRFMFERDD值分别为21.50、20.15、21.02和17.30,分别为F5AM,F5MI,F5MI,F6AM和F6MI。此外,IMF4的最高平均IMFRFHSERDD值为39,21、39.14、36.29和33.06,时间间隔为500-600、800-900、800-900、800-900,以及F5am,f5am,f5mi,f5mi,f6am和f6mi,f6mi,f6mi,f6mi,f6mi,f6mi,f6mi,f6mi,f6mi,f6mi,f6mi,f6mi,f6mi,fymi,f6mi,f6mi,flymi,f6m和f6mi,f6m和f6mi,500–600 ms。这项研究的结果,促进我们对F5MM,F5MI,F6MM和F6MI的有意义的特征信息的理解,从而使基于MI的大脑计算机界面辅助设备为残疾人设计。
摘要 - 准确的工作量和资源预测是为了实现积极,动态和自适应资源分配,用于构建具有成本效益,能源良好和绿色云数据中心(CDC),为用户提供令人满意的优质服务,并为云提供者提供高收入。这很具有挑战性,因为CDC中急剧增加和大规模的工作量和资源使用的模式随时间而变化显着。当前的预测方法通常无法处理隐式噪声数据,并在工作量和资源时间序列中捕获非线性,长期和短期和空间特征,从而导致预测准确性有限。为解决这些问题,这项工作设计了一种名为VSBG的新型预测方法,该方法无缝且创新地结合了变分模式分解(VMD),Savitzky Golay(SG)滤波器(SG)滤波器,双向长期短期内存(LSTM)和GRID LSTM和GRID LSTM和GRID LSTM,以预测工作量和资源在CDC中的工作量和资源使用。vsbg在执行其预测之前,以四步骤的方式以四步方式整合VMD和SGFURTER。VSBG利用VMD将非机构工作负载和资源时间序列分为多种模式函数。然后,在VSBG中,这项工作设计了二次惩罚,用拉格朗日乘数将其最小化,并采用对数操作和SG滤波器来平滑第一个模式功能,以消除噪声干扰。最后,VSBG首次系统地捕获了具有两个Bilstm层的流量和复杂时间序列数据的深度和时间特征,在此之间,GridLSTM层在其中,从而准确地预测了CDC中的工作量和资源。具有不同现实世界数据集的广泛实验证明,VSBG在预测准确性和收敛速度上的整体最新算法都优于整体。
摘要:边际光谱(MS)座头鲸发声(HWV)信号的特征信息是一个有趣而重要的研究主题。经验模式分解(EMD)是用于海洋哺乳动物发声的强大时间 - 频率分析工具。在本文中,使用EMD分析方法提取了HWV信号的新MS特征创新信息。分别由17.2 ms的时间持续时间为17.2 ms的36个HWV样品分别为I类,II和III类,分别由15、5和16个样本组成。评估了以下比率:1个固有模式函数(IMF1)的平均能量比和剩余功能(RF)与I类样品的转录总能量; IMF1,第二IMF(IMF2)和RF的平均能量比与II类样品的共有能量的平均能量比; IMF1,第六IMF(IMF6)和RF与III类样品的总能量的平均能量比。这些平均能量比都超过10%。在2980–3725,3725-4470,4470-5215,4470-5215,11,175-1175-11,175-11,11,11,11,11,920 hecrance IMF1与转诊总能量的平均能量比率为9.825%,13.790%,4.938%,3.977%和3.32%样品;在745–1490和1490–2235 Hz频段中,在II类样品中分别为14.675%和4.910%;在2980–3725、3725–4470和11,175–11,920 Hz频段中,为12.0640%,6.8850%和4.1040%,在III类样品中分别为11,175–11,920 Hz。 这项研究的结果为从HWV信号的MS特征获得的信息提供了更好的理解,高分辨率和新的创新观点。IMF1与转诊总能量的平均能量比率为9.825%,13.790%,4.938%,3.977%和3.32%样品;在745–1490和1490–2235 Hz频段中,在II类样品中分别为14.675%和4.910%;在2980–3725、3725–4470和11,175–11,920 Hz频段中,为12.0640%,6.8850%和4.1040%,在III类样品中分别为11,175–11,920 Hz。这项研究的结果为从HWV信号的MS特征获得的信息提供了更好的理解,高分辨率和新的创新观点。