摘要 目的。本研究的目的是通过机器学习方法识别受试者之间共享的相位耦合模式,该方法利用来自工作记忆 (WM) 任务的源空间脑磁图 (MEG) 相位耦合数据。事实上,神经振荡的相位耦合被认为是远距离大脑区域之间通信的关键因素,因此在执行认知任务(包括 WM)时至关重要。以前研究认知任务期间相位耦合的研究通常集中在几个先验选择的大脑区域或特定频带上,并且已经认识到需要数据驱动的方法。机器学习技术已成为分析神经成像数据的宝贵工具,因为它们可以捕捉多元信号分布中的细粒度差异。在这里,我们期望这些应用于 MEG 相位耦合的技术可以揭示个体之间共享的 WM 相关过程。方法。我们分析了作为人类连接组项目的一部分收集的 WM 数据。当受试者 (n = 83) 在两种不同条件下执行 N -back WM 任务时收集 MEG 数据,即 2-back(WM 条件)和 0-back(控制条件)。我们估计了这两种条件以及 theta、alpha、beta 和 gamma 波段的相位耦合模式(多元相位斜率指数)。然后使用获得的相位耦合数据训练线性支持向量机,以便使用跨受试者交叉验证方法对受试者正在执行的任务条件进行分类。分类是根据来自各个频带的数据和所有频带的组合(多频带)分别进行的。最后,我们通过特征选择概率评估了不同特征(相位耦合)对分类的相对重要性。主要结果。分别根据 theta(62% 准确率)和 alpha 波段(60% 准确率)中的相位耦合模式成功地对 WM 条件和控制条件进行了分类。重要的是,多波段分类表明,不仅在 theta 和 alpha 波段,而且在 gamma 波段中的相位耦合模式也与 WM 处理有关,分类性能的提高 (71%) 证明了这一点。意义。我们的研究使用 MEG 源空间功能连接成功解码了 WM 任务。我们的方法结合了跨主题分类和我们小组最近开发的多维指标,能够检测到个体之间共享的连接模式。换句话说,结果可以推广到新的个体,并允许对与任务相关的相位耦合模式进行有意义的解释。
通过增加 S 模式应答器装备,NAS 中的监视效果得到进一步增强。S 模式飞机可以通过从注册号或其他编号方案派生的代码唯一地标识,该代码与飞行员选择的 A 模式代码无关。点名监视中的 S 模式飞机不受同步乱码的影响。内置于 S 模式协议中的错误检测、错误纠正和自适应重审降低了对 ATCRBS 干扰的敏感度并提高了整体链路可靠性。S 模式应答器的容差比旧的 ATCRBS 应答器更严格,并且通常在下行链路频率和周转时间等参数中表现出较小的变化。与 ATCRBS 相比,整体监视精度提高了四倍。同质的 S 模式技术将以与 S 模式技术带来的风险缓解因素成正比的速率提供 NAS 中的安全性。
图 3 掺杂调控 vdW 异质结理论研究典型成果( a )结构优化后的 C 、 N 空位及 B 、 C 、 P 、 S 原子掺杂 g-C 3 N 4 /WSe 2 异质结 的俯视图 [56] ;( b )图( a )中六种结构的能带结构图 [56] ;( c )掺杂的异质结模型图、本征 graphene/MoS 2 异质结的能带结 构及 F 掺杂 graphene/ MoS 2 异质结的能带结构 [57] ;( d ) Nb 掺杂 MoS 2 原子结构的俯视图和侧视图以及 MoS 2 和 Nb 掺杂
Figure 12.1540-MeV 209Bi ion irradiation 1.7 × 10 11 ions/cm 2 TEM images of AlGaN/GaN HEMT devices: (a) Gate region cross-section; (b) The orbital image of the heterojunction region shown in Figure (a); (c) The image shown in Figure (a) has a depth of approximately 500 nm; (d) Traces formed at the drain; (e) As shown in Figure (d), the trajectory appears at a depth of ap- proximately 500 nm [48] 图 12.1540-MeV 209Bi 离子辐照 1.7 × 10 11 ions/cm 2 的 AlGaN/GaN HEMT 器件的 TEM 图像: (a) 栅极区域截面; (b) 图 (a) 所示异质结区域轨道图 像; (c) 图 (a) 所示深度约 500 nm 图像; (d) 在漏极形成的痕迹; (e) 如图 (d) 所示,轨迹出现在深度约 500 nm 处 [48]
恒压状态下,芯片内部恒流环 CC_COMP 电压大 于 3.5V ,当输出负载电流 I O1 突然增大到 I O2 (超 过恒流输出电流 I OCP ), CC_COMP 会从高电压下 降到 3.5V 以下。当 CC_COMP 下降到 3.5V 时, 芯片会短暂关闭恒流控制,继续以恒压方式工作, 进入 P EAKLOAD 模式,系统升频, I O2 越大频率越大, 并且允许的最大频率增加至 F PKMAX ;与此同时会 启动内部的 P EAKLOAD 模式计时功能,保证此模式 的最大工作时间不会超过预设的 T HOLD 。计时时间 达到 T HOLD 后,芯片会强行退出 P EAKLOAD 模式, 并且会激活一个屏蔽时间 T BLANK 的计时,以确保 允许下一次进入 P EAKLOAD 模式至少超过此 T BLANK 时间;与此同时,会激活内部恒流模块的工作, 在这种情况下,由于负载还是 I O2 ,所以系统的输 出电压会持续下降,直至触发 H ICCUP 保护、系统 重启。
图 2-2 GAN 发展脉络 ...................................................................................................................... 3
ESD 范围 HBM (人体静电模式) ------------------------------------------------------------------------------------------- ± 4kV
探索人脑的复杂结构对于理解大脑功能和诊断脑部疾病至关重要。得益于神经成像技术的进步,一种新方法已经出现,该方法涉及将人脑建模为图结构模式,其中不同的大脑区域表示为节点,这些区域之间的功能关系表示为边。此外,图神经网络(GNN)在挖掘图结构数据方面表现出显着优势。开发 GNN 来学习脑图表征以进行脑部疾病分析最近引起了越来越多的关注。然而,缺乏系统的调查工作来总结该领域的当前研究方法。在本文中,我们旨在通过回顾利用 GNN 的脑图学习工作来弥补这一空白。我们首先介绍基于常见神经成像数据的脑图建模过程。随后,我们根据生成的脑图类型和目标研究问题对当前的作品进行系统分类。为了让更多感兴趣的研究人员能够接触到这项研究,我们概述了代表性方法和常用数据集,以及它们的实现来源。最后,我们介绍了对未来研究方向的见解。本次调查的存储库位于 https://github.com/XuexiongLuoMQ/Awesome-Brain-Graph-Learning-with-GNNs。