KRA 405B 系统在进近过程中为飞行员提供可靠、准确的地平面以上高度 (AGL) 信息,并将此信息输出为模拟电压和 ARINC 429 数字格式
理论: - 电压表是一种用于测量电路中两个点之间电势差的仪器。它是并行连接的。它通常具有高电阻,因此从电路中需要可忽略不计的电流。模拟电压按摩器按照测量的电压成比例地将指针移动,并且可以通过电流计和串联电阻器构建。使用放大器的米可以测量微伏或更少的小电压。数字电压表可以通过使用模拟对数字转换器来显示电压的数值显示。
在长时间持续飞行期间提供稳定且极其准确的测量。压力高度是参考标准海平面压力 29.92Hg 的高度。由于气压会根据天气条件在当地发生变化,因此需要对测量的压力进行本地校正。此气压校正或气压高度参考当地气压,在 FL180 以下使用。飞行员只需拨入高度计或显示控制面板上的当地气压,即可控制应用于测量压力高度的校正量。此校正以以下几种形式之一发送到空气数据计算机:模拟电压、同步格式或数字。必须考虑的最终测量值是空气温度,它会影响许多计算。总空气温度 (TAT) 探头是一种方法,而简单的外部空气温度 (OAT) 探头是另一种方法。
数字计量是一个庞大且不断发展的领域,应用于从白色家电到精密医疗仪器和先进电子产品的所有工业领域。它现在是仪器仪表领域的首选方法,传感和测量越来越依赖于采样测量的模拟到数字转换。传感器的模拟电压或电流会尽快使用 ADC 转换为数字量。一旦电信号被数字化,诸如基本均方根 (RMS) 值、峰值、波峰因数和谐波含量等量都可以直接计算,而不需要每个量都需要特定的测量和校准。精密集成电路和测量设备的最新工业研究与开发带来了采样率和潜在精度的重大变化,然而,测量方法却未能跟上要求的步伐。
I.简介电池电量指示器只会通过发光LED数量来知道设备的电池状态。例如,四个LED发光意味着电池容量为40%。您可以与逆变器或汽车电池一起使用此电路;它将为您提供有关电池状态的指示。因此,在电池死亡之前,您可以为其充电。该电路的优势是它不需要电源;它将从设备本身的电池中采用电源。这个简单的电路基于单个IC LM3914,其中很少有离散组件。LM3914是一个整体集成电路,它感应模拟电压并得出10 LED提供线性模拟显示。在本文中,我们将展示如何使用易于可用的组件设计简单的电池电量指示器。电池电量指示器仅通过发光的LED指示电池的状态。例如,六个LED发光意味着电池容量仍有60%。本文将解释如何设计电池级指示器。我们可以使用此电路检查汽车电池或逆变器。因此,通过使用此电路,我们可以增加电池的寿命。
一般信息 微处理器:32 位高性能制造质量标准 电源 高 RFI 抗扰度 电池反接保护和电池瞬态保护 环境工作温度范围 尺寸:180mm x 91mm x 18mm(不包括连接器) 重量:385gms(0.85lbs)Autosport 连接器 保修:2 年零件和人工 显示屏 定制反射式 LCD、高对比度、耐高温 背光 LCD 显示来自传感器、CAN 总线、RS232 或计算的任何值 显示模式 70 段条形图,带有用户可定义范围和通道源 条形图上的可编程峰值保持和设定点 4 个数字显示项 13 位字母数字显示区 - 每行 1、2 或 3 个通道 警报显示覆盖顶部、左侧/右侧 底行数(覆盖) 输入 模拟电压输入 模拟温度输入 数字输入 速度输入 开关输入 宽带 Lambda 通道 扩展单元: E888:8 个 AV 输入、8 个热电偶、4 个数字输入(20 个输入) E816:16 个 AV 输入、4 个数字输入(20 个输入)
自 20 世纪末首次在原子气体中实现玻色-爱因斯坦凝聚以来,超冷原子气体已成为研究各种量子现象的广泛采用的平台。近年来,人们越来越关注具有大磁偶极矩的物质,因为这些物质与更常见的碱金属相比表现出更强的长程相互作用。镝的磁矩约为 10 𝜇 𝐵 ,是磁性最强的原子物质,因此已成为研究长程(偶极-偶极)相互作用与接触相互作用竞争或占主导地位的系统的理想平台。在本文中,我描述了一种新型镝量子气体机的设计和优化。除了详细描述该装置的组件及其性能外,我还详细描述了用于提高磁光阱 (MOT) 负载率的“角度减速”技术的特性和优化。我还详细描述了使用该装置生产和检测第一个玻色-爱因斯坦凝聚体 (BEC) 的过程。本论文还详细描述了用于镝实验的新控制硬件和软件的开发,但可以(并且已经)用于其他量子气体实验。在硬件方面,我讨论了高性能模拟电压控制通道的设计,这些通道比市售的替代方案更具优势。在软件方面,我讨论了我设计的实验室控制和记录数据库系统,它既扩展了我们的控制软件的功能,又简化了实验室数据的存储和可访问性。
摘要:为 MONOLITH ERC Advanced 项目生产的单片硅像素原型用 70 MeV 质子辐照,能量密度高达 1 × 10 16 1 MeV n eq /cm 2。ASIC 包含一个六边形像素矩阵,间距为 100 μ m,由低噪声和超快速 SiGe HBT 前端电子设备读出。使用厚度为 50 μ m 的外延层、电阻率为 350 Ω cm 的晶圆来生产完全耗尽的传感器。使用 90 Sr 源进行的实验室测试表明,探测器在辐照后工作良好。信噪比在能量密度高达 6 × 10 14 n eq /cm 2 时没有发生变化。信号时间抖动被估算为阈值处电压噪声与信号斜率之比。在 − 35 ◦ C、传感器偏置电压为 200 V 和前端功耗为 0.9 W/cm 2 时,最可能信号幅度的时间抖动估计为 𝜎 90 Sr 𝑡 = 21 ps(质子通量高达 6 × 10 14 n eq /cm 2 时)和 57 ps(1 × 10 16 n eq /cm 2 时)。将传感器偏置增加到 250 V 并将前置放大器的模拟电压从 1.8 V 增加到 2.0 V,可在 1 × 10 16 n eq /cm 2 时提供 40 ps 的时间抖动。
注释: 1.B 级温度范围为 -40 ℃ ~+85 ℃。 2.这些数据是按最初设计的产品发布的。 3.一次校准实际上是一次转换,因此这些误差就是表 1 和表 3 所示转换噪声的阶数。这 适用于在期望的温度下校准后。 4.任何温度条件下的重新校准将会除去这些漂移误差。 5.正满标度误差包括零标度误差 ( Zero-Scale Error )(单极性偏移误差或双极性零误 差),且既适用于单极性输入范围又适用于双极性输入范围。 6.满标度漂移包括零标度漂移 (单极性偏移漂移或双极性零漂移)且适用于单极性及 双极性输入范围。 7.增益误差不包括零标度误差,它被计算为满标度误差——对单极性范围为单极性偏移 误差,而对双极性范围为满标度误差——双极性零误差。 8.增益误差漂移不包括单极性偏移漂移和单极性零漂移。当只完成了零标度校准时,增 益误差实际上是器件的漂移量。 9.共模电压范围:模拟输入电压不超过 V DD +30mV ,不低于 GND-30mV 。电压低于 GND-200mV 时,器件功能有效,但在高温时漏电流将增加。 10.这里给出的 AIN ( + )端的模拟输入电压范围,对 TM7706 而言是指 COMMON 输入 端。输入模拟电压不应超过 V DD +30mV, 不应低于 GND-30mV 。 GND-200mV 的输入 电压也可采用,但高温时漏电流将增加。 11.VREF=REF IN ( + )- REF IN ( - )。 12.只有当加载一个 CMOS 负载时,这些逻辑输出电平才适用于 MCLK OUT 。 13.+25 ℃时测试样品,以保证一致性。 14.校准后,如果模拟输入超过正满标度 , 转换器将输出全 1, 如果模拟输入低于负满标度, 将输出全 0 。 15.在模拟输入端所加校准电压的极限不应超过 V DD +30mV 或负于 GND - 30mV 。 16.当用晶体或陶瓷谐振器作为器件的时钟源时 (通过 MCLK 引脚 ), V DD 电流和功耗 随晶体和谐振器的类型而变化 (见“时钟和振荡器电路”部分)。 17.在等待模式下,外部的主时钟继续运行, 5V 电压时等待电流增加到 150 μ A , 3V 电 压时增加到 75 μ A 。当用晶体或陶瓷谐振器作为器件的时钟源时,内部振荡器在等待 模式下继续运行,电源电流功耗随晶体和谐振器的类型而变化 (参看“等待模式” 一节)。 18.在直流状态测量,适用于选定的通频带。 50Hz 时, PSRR 超过 120dB (滤波器陷波 为 25Hz 或 50Hz )。 60Hz 时, PSRR 超过 120dB (滤波器陷波为 20Hz 或 60Hz )。 19.PSRR 由增益和 V DD 决定,如下: