> 自动补偿测试导线连接点的环境温度或指示冷端温度 > 热电偶和导线电阻测量精度达 0.01 欧姆,绝缘测量精度达两 (2) 兆欧 > 大型、9mm (0.35”) 高字符、3 1/2 位液晶显示屏,带有预编程的图例 > 范围:经认证的 0 至 1000º C,扩展为 -60 至 1160º C > 测量并以摄氏度 (ºC) 温度为单位显示 CH/AL 热电偶的值 > 模拟 CH/AL 热电偶,带或不带模拟系统导线电阻 > 精度:环境温度 (25ºC) 下的典型测量误差小于 ± 1ºC
多体量子系统在理论和实验量子信息处理中无处不在,从凝聚态系统的模拟到良好量子纠错码的开发。近年来,我们对这些系统复杂性的数学理解取得了重大进展。在这些讲座中,我们将探讨多体量子系统的物理模型的复杂性,从物质的基态和热态到短时量子演化的输出。我们将考虑两种复杂性概念:(i) 模拟系统属性的计算难度(又名正向问题);(ii) 从访问样本(又名逆问题)中学习系统的经典描述的可学习性。
我们的分析目的是建立在俄勒冈州的海上风积分的先前工作(Douville等人)(2020)和美国东北部(Beiter等人2020)通过分析未来的发电和传输系统将如何管理离岸风的包含。该分析为系统规划人员和政策制定者提供了见解,因此他们可以解决关键系统的约束,并最大程度地提高海上风的价值,俄勒冈州和更广泛的电力系统。类似于Beiter等人所采用的方法。2020和Douville等。 2020,我们使用生产成本模型(PCM)来模拟系统调度,以了解近海风的集成的操作影响。 而Douville等人。 2020专注于许多级别的离岸风能部署,我们选择了几个关键水平的离岸风,并改变了系统其余部分的网格基础设施特征。 最值得注意的是,我们改变了陆基可变可再生能源(VRE)渗透,传输基础设施投资程度以及在海上风注射点上的储能系统的部署。 我们还通过运行多个模拟不同年份的历史天气条件来测试近海风集成的发现的鲁棒性。2020和Douville等。2020,我们使用生产成本模型(PCM)来模拟系统调度,以了解近海风的集成的操作影响。而Douville等人。2020专注于许多级别的离岸风能部署,我们选择了几个关键水平的离岸风,并改变了系统其余部分的网格基础设施特征。最值得注意的是,我们改变了陆基可变可再生能源(VRE)渗透,传输基础设施投资程度以及在海上风注射点上的储能系统的部署。我们还通过运行多个模拟不同年份的历史天气条件来测试近海风集成的发现的鲁棒性。
> 自动补偿测试导线连接点的环境温度或指示冷端温度 > 热电偶和导线电阻测量精度达 0.01 欧姆,绝缘测量精度达两 (2) 兆欧 > 大型、9mm (0.35”) 高字符、3 1/2 位液晶显示屏,带有预编程的图例 > 范围:经认证的 0 至 1000º C,扩展为 -60 至 1160º C > 测量并以摄氏度 (ºC) 温度为单位显示 CH/AL 热电偶的值 > 模拟 CH/AL 热电偶,带或不带模拟系统导线电阻 > 精度:环境温度 (25ºC) 下的典型测量误差小于 ± 1ºC
人工智能 (AI) 是计算机科学与工程领域的一个分支,其重点是创建能够自主推理、学习和行动的智能机器。人工智能是一种机械化的模拟系统,旨在收集和处理知识和信息,同时利用宇宙中现有的智慧 (Grewal, 2014)。这需要以一种能够为相关方提供可操作见解的方式收集、分析和分发知识、信息和情报。这指的是系统准确理解海量数据、从中吸收知识,然后利用这些知识实现预定目标和任务的能力,包括预测未来和执行类似于人类的职责。
3. 为什么是数字广播?现有的 AM 和 FM 模拟系统存在固有缺陷,并且都无法在整个覆盖范围内提供均匀的接收质量。 AM 广播接收受到带宽限制(会限制音频质量)以及来自其他同信道和相邻信道传输的干扰的限制。这在夜间尤其麻烦。20 世纪 50 年代开始的 FM 服务提高了音频带宽并克服了夜间干扰,但广播被设计为使用带有外部天线的固定接收器接收。在车辆或便携式设备上收听时,接收会受到反射信号(多径)和其他形式干扰的影响,尤其是在郊区和城市地区。
多年来,安装在大力神商用版和部分军用版上的飞行数据记录仪都是由位于加利福尼亚州安大略的洛克希德飞机服务公司 (LAS) 制造的 LAS-l09C 或 LAS-109D 型号。这是一种模拟系统,可将飞行时间和有限数量的飞行参数记录在安装在记录器单元盒中的铝箔带上。在操作过程中,电机驱动的主轴将磁带移过几支可移动的金属头笔,这些笔会在铝箔带上划线。固定的笔标记基线,作为测量的参考线。因此,划线会在铝箔带上形成永久记录,在必须安装新的磁带盒之前,铝箔带可以存储大约 200 小时的飞行操作数据。
诸如红旗演习之类的实弹飞行演习可以提供极好的学习机会。然而,这种演习费用昂贵,后勤工作难度大。环境、监管和安全方面的约束也限制了实弹训练期间可以提供的学习体验种类。模拟提供了一种解决其中一些缺点的方法。自 1990 年代以来,联盟国家开展的重要研发计划表明,通过连接分布式模拟系统可以获得类似的训练效益。2 现在,大型模拟器网络定期用于提供复杂而逼真的空战训练。最近,人们开始关注将实弹飞机集成到模拟网络的可能性。这引发了大量关于实弹-虚拟-建设 (LVC) 集成的重要性、潜在效益以及基础科学和技术的讨论。
C2SIM 沙箱是乔治梅森大学 C4I 和网络中心在北约 STO CSO 的支持下开发的 C2SIM 软件的集合。它为 C2SIM 系统的测试和演示提供支持。它结合了参考实现 C2SIM 服务器、C2SIMGUI 和支持 C2SIM 的商业模拟系统 VRForces 版本,除需要许可证的 VRForces 外,其余均为开源。它经过打包,可通过 Web 浏览器远程访问(推荐使用 Google Chrome)。完整的沙箱可用于演示。此外,它还可用于在开发过程中测试其他一些符合 C2SIM 的应用程序(通常是模拟),并且在将新模拟连接到 C2SIM 时已在该模式下使用。图 9 显示了 C2SIM 沙箱的结构。