点物体模糊图像的模糊程度 恢复原始图像中相对运动模糊的图像的问题。提取相机和物体场景之间的运动模糊程度对于大量应用中的运动模糊识别具有重要意义。这里提出的解决方案是PSF。Cannon [1] 处理了均匀线性的情况,确定了表征运动模糊的重要参数,该参数由方脉冲PSF和模糊的点扩展函数(PSF)描述,仅给出模糊在谱域图像本身中利用其周期性零点的性质。这种识别方法基于模糊图像的概念。这些零点被强调,因为沿运动方向的图像特征是倒谱域的,并且模糊程度的估计不同于其他方向的特征。取决于测量零点之间的间隔。关于 PSF 形状、谱域中零点的均匀性和平滑性的假设不满足,模糊图像在运动方向上的零点间距大于在其他方向上的零点间距。此外,在这个方向上存在各种运动退化的情况,例如加速原始未模糊运动 [2, 3] 和低频振动 [4]。物体。通过过滤模糊图像,我们强调 PSF 特性,而忽略图像特性。这里提出的是最大似然图像和模糊识别方法 [5–7]。这些方法对原始图像、模糊的PSF进行建模,并评估其形状,这取决于模糊和噪声过程。原始图像被修改为二维自回归(AR)过程,PSF参数允许快速高分辨率恢复模糊图像。 1997 Academic Press 具有有限脉冲响应。最大似然估计用于识别图像和模糊参数。模糊模型参数的识别被纳入恢复算法并重新进行模糊图像的恢复。介绍 模糊模型参数的识别被纳入恢复算法并重新进行模糊图像的恢复。介绍 模糊模型参数的识别被纳入恢复算法并重新进行模糊图像的恢复。1.介绍 模糊模型参数的识别被纳入恢复算法并重新进行模糊图像的恢复。成像系统的一个难题是性能下降需要大量计算。由运动引起的图像。当 Savakis 和 Trussell [8] 提出另一种模糊识别方法时,这个问题很常见。使用对原始图像平面的估计,即使相机由人手握住。功率谱(期望值),PSF 估计为 ,通常基于有关恢复残差功率和退化过程之间最佳匹配的信息的准确性。给定理想图像 f (x, y),相应的候选 PSF 与真实 PSF 相似。分级图像 g (x, y) 通常建模为 在本文中,我们开发了一种从运动模糊图像本身识别模糊参数的新方法。g ( x , y ) � � � h ( x � x � , y � y � ) f ( x � , y � ) dx � dy � � n ( x , y ) 根据对运动模糊对图像影响的研究,从模糊图像中提取方向、程度 (1) 和形状估计等模糊特征。虽然模糊识别的动机通常是其中 h ( x , y ) 是线性平移不变 PSF(点扩散图像恢复,这里提出的方法不起作用)和 n ( x , y ) 是随机噪声。将识别过程与恢复过程联系起来。在运动模糊图像中,模糊程度参数是该方法解决一维模糊类型,这在运动退化的情况下很常见。模糊 1 电子邮件:itzik@newton.bgu.ac.il。2 电子邮件:kopeika@bguee.bgu.ac.il。效果被认为是线性的和空间不变的,并且
摘要。朦胧的图像带来了一个具有挑战性的问题,由于信息丢失和颜色失真而遭受。当前的基于深度学习的去悬式方法通过增加网络深度来增强性能,但会导致大量参数开销。同时,标准卷积层集中在低频细节上,通常会说出高频信息,这阻碍了模糊图像中提出的先前信息的有效利用。在本文中,我们提出了TCL-NET,这是一个轻巧的飞行网络,该网络强调了频域特征。我们的网络首先包含一个用于提取高频和低频内形式的所谓层,该层是针对原始模糊图像的快速变压器专门设计的。同时,我们设计了一个频率域信息融合模块,该模块将高频和低频信息与后续卷积层的卷积网络作品集成在一起。此外,为了更好地利用原始图像的空间信息,我们引入了一个多角度注意模块。使用上述设计,我们的网络以仅0.48MB的总参数大小实现了出色的性能,与其他最先进的轻量级网络相比,参数的数量级降低了。
相机在曝光过程中抖动导致运动模糊是图像退化的一种常见现象,而忽略模糊图像中存在的异常值将导致复原图像出现振铃效应。针对这些问题,提出了一种带异常值处理的相机抖动模糊图像复原方法。该算法以自然图像统计数据为先验模型,结合变分贝叶斯估计理论和 Kullback-Leibler 散度构造代价函数,易于优化以估计模糊核。考虑到异常值引起的振铃效应,提出了一种基于期望最大化的反卷积算法来减弱振铃效应。实验结果表明该方法实用有效,并引发了对模糊图像复原新方法的思考。关键词:相机抖动,图像去模糊,期望最大化算法;核估计,异常值处理
本文研究了不同质量图像诱发的脑电信号所构成的脑网络的代数拓扑特征,并在此基础上提出了一种神经生理学的图像质量评价方法。该方法通过脑电采集与常规图像评价流程相结合获取质量感知相关的神经信息,通过拓扑数据分析获得不同失真程度图像下的有生理意义的脑部响应。验证实验结果表明,清晰图像与模糊图像诱发的脑电数据代数拓扑特征在多个频带中存在显著差异,尤其是在β频带。此外,JPEG压缩引起的脑网络相变差异更为显著,表明人类对除高斯模糊以外的JPEG压缩更敏感。总的来说,本文研究了扭曲图像诱发的脑电信号的代数拓扑特征,有助于图像质量的神经生理学评估研究。
摘要:生成对抗网络(GAN)已转换了图像合成的领域,尤其是在引入条件gan(CGAN)(CGAN)的引入中,通过在整个生成过程中整合额外信息,从而允许更自定义的方法。模糊图像的存在可能会对图像质量产生不利影响,并可能阻碍随后的图像处理活动。为了对抗图像模糊,我们引入了一种新型的单像模糊去除技术,该技术依赖于条件生成的对抗网络(CGAN)。在这种方法中,CGAN充当基本框架,将模糊的图像作为补充条件数据并实施Lipschitz的约束。通过有条件的对抗损失,内容损失和感知损失的组合来培训网络体系结构,以纠正模糊区域并重建图像。通过实验评估,很明显,所提出的方法在删除模糊方面优于现有算法,在保持图像清晰度的同时有效地减少了模糊性。
近年来,脑机接口 (BCI) 已被提议作为中风后神经康复的一种手段 [1, 2]。研究表明,BCI 可以人工关闭因病变而中断的运动控制回路。BCI 可以通过脑电图解码尝试运动,并触发外骨骼或电刺激等设备,这些设备可以响应尝试运动提供相关的躯体感觉反馈 [3-6]。通过将与尝试运动和躯体感觉反馈相关的皮质活动配对,推测可以诱导与赫布相关的可塑性 [7]。多项研究概述了使用 BCI 进行中风康复的临床效果,其中普遍趋势是患者可以诱导可塑性并改善运动功能 [8-11]。为了进一步完善 BCI 在运动障碍康复中的应用,下一步可能是解码比简单的孤立运动更复杂、更具临床相关性的功能性运动,尽管它们也很重要。使用更加复杂的现代外骨骼,这些复杂的运动也更容易实现。然而,限制因素可能是从单次脑电图中解码功能性运动,因为记录的电活动是潜在活动的模糊图像,例如由于体积传导 [12]。先前的研究表明,可以解码具有不同动力学特征的不同运动类型 [4, 6, 13, 14],但这主要是简单的孤立运动,例如踝关节背屈或腕关节伸展/屈曲。此外,同一肢体的不同运动类型也已被解码 [15, 16]。研究还表明,可以从脑电图中检测到更复杂的运动,例如 [17],但要用于诱导可塑性的康复,仅应使用运动前活动来实现传出活动和体感反馈之间的严格时间关联 [18]。预计体感反馈应在最大传出活动 [7] 后不到 200-300 毫秒内到达皮质层,此时运动控制信号被发送到脊髓。这限制了可用于解码预期运动的判别信息量。尽管 EEG 的空间分辨率有限,但硬件(放大器和电极)和信号处理技术不断改进,可能可以从单次试验 EEG 中解码复杂的功能性运动。