这里,我们展示了透明导电和半规则库仑阻塞,可通过施加栅极电压进行调节,即使在超低温(T 基区 ≃ 15 mK)实验中也是如此。这是基于最近的发现,即可以使用半金属铋实现与平面 MoS 2 的室温欧姆接触:[38] 由于费米能级钉扎是由界面处金属和半导体态的杂化引起的,[39] 降低费米能级附近的接触态密度违反直觉地实现了可调谐性和透明导电。虽然(可能是基板引起的)无序仍然存在,但我们的数据表明接触处明显没有电荷陷阱,并且接触电阻很低。这代表着接触质量的显着改善。在低温极限 T ≤ 100 mK,我们观察到单能级传输的迹象。
摘要 — 为了更好地预测功率转换器中晶体管的高频开关操作,必须准确评估这些器件的接入元件,如电阻和电感。本文报告了使用 S 参数对氮化镓 (GaN) 封装功率晶体管进行特性分析,以提取源自欧姆接触和封装的寄生效应。在封装晶体管时,使用在 FR4 印刷电路板 (PCB) 上设计的特定测试夹具设置校准技术,以便从测量的参数中获取晶体管平面中的 S 参数。所提出的方法基于改进的“冷 FET”技术和关断状态测量。它应用于市售的增强型 GaN HEMT(高电子迁移率晶体管)。将提取的寄生元件与器件制造商提供的参考值进行比较。还评估了结温对漏极和源极电阻的影响。最后,提出了这些寄生效应的电热模型。
电子和空穴对以及(ii)强氧化还原电位以支持材料间的高电子转移。2先进纳米结构和纳米层状光催化剂的出现为多学科研究开辟了道路,旨在定制物理化学、结构和光电特性,以促进增强有机污染物的催化作用。增强催化性能和材料可见光活化的选择包括半导体的金属或非金属掺杂3和石墨烯等催化纳米结构的缺陷工程。4最有前途的工程策略涉及电子屏障的设计,它被引入导电层和半导体层的交界处。5导电层(通常是金属或碳表面)与半导体材料(通常是金属氧化物)之间的界面可能导致两种类型的结的形成,即欧姆结或肖特基结。 6 一方面,当半导体材料提供比导电材料更高的功函数时,就会形成欧姆结。 7 然而,欧姆接触在金属和导电材料之间提供了持续的电子流。
氮化铝(Algan)是紫外发光光子设备开发的一种材料。基于钒的金属堆栈是与N型Algan形成欧姆接触的流行方法。但是,这些金属堆栈必须退火至600°C以上的温度[6],以形成VN,在此期间,欧姆接触堆栈中的金属可以横向散布和短图案设备。这项研究的目的是确定将V/al/ni/au堆栈的横向扩散最小化的退火条件,并研究退火下的这些堆栈的行为。金属堆栈在8×8毫米硅(SI)块上图案化,并在不同的温度和时间上退火。退火条件的“安全区域”并未确定设备。通过C-TLM结构的扫描电子显微镜(SEM)图像确定扩散量。我们还观察到退火下的Ni的“弹力”可能是由于其高表面能。在以后的研究中,这种观察结果激发了将Ni切换为具有较低表面能量的金属。
我们对基于 Al x Ga 1 x N 量子阱通道的 AlN/AlGaN/AlN 高电子迁移率晶体管 (HEMT) 的电气特性进行了成分依赖性研究,其中 x ¼ 0.25、0.44 和 0.58。这种超宽带隙异质结构是下一代射频和电力电子器件的候选材料。使用选择性再生长的 n 型 GaN 欧姆接触会导致接触电阻随通道中 Al 含量的增加而增加。DC HEMT 器件特性表明,对于 x ¼ 0.25、0.44 和 0.58,最大漏极电流密度分别从 280 mA/mm 逐渐降低到 30 mA/mm 再到 1.7 mA/mm。与此同时,这三个 HEMT 的阈值电压 (幅度) 同时从 5.2 V 降低到 4.9 V 再到 2.4 V。这一关于 Al 组分 x 对晶体管特性影响的系统实验研究为在 AlN 上设计用于高电压和高温极端电子器件的 AlGaN 通道 HEMT 提供了宝贵的见解。
摘要 — 碳纳米材料、石墨烯和碳纳米管 (CNT) 已成为未来先进封装技术集成的有前途的材料。碳纳米材料的主要优点包括出色的电性能、热性能和机械性能。在本文中,成功实现了顶部石墨烯层到原生 CNT 束的转移过程,界面处直接实现石墨烯与 CNT 接触。四点探针 (4PP) I – V 特性表明石墨烯和 CNT 之间实现了欧姆接触。在 90 000 μ m 2 CNT 面积(包括 CNT-石墨烯接触电阻)中获得了 2.1 的低 CNT 凸块电阻,表明在相同的制造和测量条件下 CNT 和 Au 之间的接触电阻降低。这项工作展示了顶部转移石墨烯在碳纳米管上的组装过程以及碳纳米管-石墨烯直接接触的电学特性的初步结果,为实现全碳基三维(3-D)互连铺平了道路。
铝 (Al) 是地壳中最丰富的金属,是继氧 (O 2 ) 和硅 (Si) 之后第三大丰富元素。它呈银白色,具有高电导率和热导率,熔点为 660 0 C。铝已广泛应用于各种领域。在基底上蒸镀的铝膜是非球面镜最常用的表面涂层,因为铝在可见光区是良好的光反射器,在中红外和远红外 (IR) 区是出色的反射器 [1]。此外,铝在微电子技术中广泛用作欧姆接触、肖特基势垒接触、栅极电极以及互连线 [2]。铝还用于制造薄膜晶体管 (TFT)、光电探测器、太阳能电池和许多其他设备 [3]。在太阳能电池的制造中,铝被广泛用作背接触,因为它易于沉积、表面电阻低,并且能够引入背面场效应 (BSF),从而最大限度地降低器件背面的载流子复合率 [4,5]。在薄膜太阳能电池中,铝接触的高反射特性被利用作为光捕获解决方案,其中低能光子将被倾斜反射回吸收层。这增加了光(光子)在器件中的光路长度,从而增加了吸收率
有机发光二极管(OLEDS)的直接沉积基于硅的互补金属 - 氧化物 - 氧化物 - 氧化芯片(CMOS)芯片已使具有高分辨率和纤维效应器的自我发射微观播放。OLED在增强和虚拟现实(AR/VR)显示器以及生物医学应用中的新兴应用,例如,作为光遗传学中细胞光递送的大脑植入物,需要在传统显示器中发现的光强度高度的宽度量。进一步的要求通常包括显微镜占地面积,特定形状和超强的钝化,例如确保基于OLED的植入物的生物相容性和最小的侵入性。在这项工作中,最多1024个Ultrabright,显微镜OLED直接沉积在针状CMOS芯片上。在CMOS芯片的Foundry提供的铝接触板上进行透射电子显微镜和能量X射线光谱,以指导触点的系统优化。等离子体处理和银层的实施导致欧姆接触条件,因此促进了橙色和蓝色发射OLED堆栈的直接真空沉积,从而导致芯片上的微米大小的像素。每个针中的电子设备允许每个像素单独切换。OLED像素产生的平均光电密度为0.25 mW mm-2,对应于> 40 000 cd m-2,远高于大脑中日光AR应用和光遗传单单元激活的要求。
量子点中限制的电子和空穴为量子涌现、模拟和计算定义了极好的构建块。硅和锗与标准半导体制造兼容,并且含有具有零核自旋的稳定同位素,因此可作为具有长量子相干性的自旋的极好宿主。在这里,我们展示了硅金属氧化物半导体 (SiMOS)、应变硅 (Si/SiGe) 和应变锗 (Ge/SiGe) 中的量子点阵列。我们使用多层技术进行制造以实现紧密限制的量子点并比较集成过程。虽然 SiMOS 可以从更大的温度预算中受益,而 Ge/SiGe 可以与金属形成欧姆接触,但定义量子点的重叠栅极结构可以基于几乎相同的集成。我们首次在 Ge/SiGe 中实现了每个平台的电荷感应,并展示了功能齐全的线性和二维阵列,其中所有量子点都可以耗尽到最后的电荷状态。在 Si/SiGe 中,我们使用 N + 1 方法调谐五重量子点,以同时达到每个量子点的少数电子状态。我们比较了电容串扰,发现 SiMOS 中的电容串扰最小,这与量子点阵列的调谐相关。我们将这些结果应用于量子技术,并将工业量子位、混合技术、自动调谐和二维量子位阵列确定为四个关键轨迹,当它们结合在一起时,可以实现容错量子计算。
摘要:在这项工作中,我们报告了使用镍(Ni)和金(AU)薄层关联,退火后层分布在P型GAN上形成高质量欧姆接触的重要性。研究了标准gan/ni/au及其反向,p型gan上的gan/au/ni均已被研究。AU/NI堆栈在这项研究中表现出最有希望的结果。虽然标准的Ni/au接触表现出准线性电流(I-V)的特征,但其对应物Au/Ni表现出纯欧姆行为,具有特定的接触电阻(ρC)低至2.0×10-4Ω.cm²,在500分钟的高空下均为500分钟后,均高达2.0×10-4Ω.cm²。X射线衍射(XRD)和透射电子显微镜(TEM)分析表明,在退火过程中,层的不完全反转导致GAN/Ni/ni/au/niO堆栈,这解释了为什么Ni/Au触点显示出较低的电性能。另一方面,对于在相同条件下退火的AU/NI触点,可以将优秀的结果归因于(i)(i)与GAN界面处的金层存在,从而使Gallide固体溶液(GA-AU)和(ii)形成了NIO直接与P-GAN接触。已知这两种机制会导致在P型GAN上形成良好的欧姆接触。这些结果表明,尽管Ni/Au是P-GAN层的标准接触,但相反的堆栈(AU/Ni)提供了最佳的欧姆行为。这对于实现gan功率二极管或晶体管的最佳性能至关重要。