摘要:用湿过程将粗菜蛋糕用作制备基于蛋白质的生物塑性薄膜的起始材料。农业废物在40℃下实现的甲酸的简单暴露15分钟,可以有助于浆液,可以通过在没有其他增塑剂添加的情况下铸造出来生产可靠的生物塑料胶片。确定最佳过程条件后,所有薄膜和膜均通过DSC和FT-IR光谱依次表征。还测试了他们的吸水能力,拉伸强度和休息性能时的伸长率。通过Fe-Sem/EDX确定产物的各自的表面形态和基本组成。通过将氧化石墨烯加载到生物聚合物三维基质中来进行一些改善其内在特性的尝试。
平台,它可以通过DNA结合CAS和DNA修饰脱氨酶组成的基础编辑器的模块化组件,该基础编辑器通过在序列靶向指导指南RNA(GRNA)中编码的适体相关的Deaminase组件组成。由于适体依赖于脱氨酶成分靶向DNA序列,PIN点平台唯一地允许多对单个Cas Nickase组件进行多用作用于同时多发性基础编辑和靶向的转基因敲入。编码由大鼠APOBEC1和SPCAS9 NICKASE组成的PIN点基本编辑器的mRNA瞬时传递与合成适性剂编码的GRNA结合使用,可实现耐用的靶蛋白敲除,并显着提高了细胞生存能力,编辑效率,以及与CRISPR-CasS9相比,基因组的编辑效率和基因组完整性均与CRISPR-CasS9相比。为了演示同种异体PSC工程的PIN点平台的实用性,我们使用自动化的克隆跟踪和拾取工作流进行了一系列基因型,生成了一组克隆性低下IPSC线。通过多重碱基编辑和同时进行靶向转基因整合的碱基编辑生成的低免疫原性IPSC系列保留了多能性,并在区别为治疗细胞产物时表现出预期的人白细胞抗原(HLA)表型。因此,PIN点平台代表了一种安全有效的解决方案,可以通过与下游自动化兼容的新型单步过程同时执行多个基因组工程操作,从而提供了极大地简化同种异体IPSC衍生细胞疗法的开发的机会。
摘要:本研究探讨了内感受和社会框架对运动同步任务中脑间电生理 (EEG) 和血流动力学 (通过功能性近红外光谱 (fNIRS) 收集) 功能连接一致性的影响。14 个二元组在有和无内感受焦点的情况下执行运动同步任务。此外,通过增强共享意向性,运动任务具有社交或非社交框架。在实验期间,通过 EEG-fNIRS 超扫描范例收集 delta、theta、alpha 和 beta 频带以及氧合和脱氧血红蛋白 (O2Hb 和 HHb)。计算两个神经生理信号的脑间一致性指数,然后将它们关联起来,以探索二元组中功能连接 EEG-fNIRS 的相互一致性。研究结果表明,与无专注条件和右半球相比,专注状态下左半球的 delta 和 O2Hb、theta 和 O2Hb 以及 alpha 和 O2Hb 之间的相关值显著更高(专注和无专注条件下均如此)。此外,当任务以社交方式与非社交方式进行比较时,在专注状态下左半球的 delta 和 O2Hb 以及 theta 和 O2Hb 之间的相关值更高。这项研究表明,专注于呼吸和共同的意向性会连贯地激活执行联合运动任务的二元组中相同的左额叶区域。
摘要 人类跑步的特点是身体与地面之间类似弹簧的相互作用,这种相互作用是由弹性肌腱实现的,弹性肌腱可以储存机械能并促进肌肉的运行条件,从而最大限度地降低代谢成本。通过实验评估两块对跑步很重要的肌肉——比目鱼肌和股外侧肌的运行条件,我们研究了肌肉做功和肌肉力量产生的生理机制。我们发现比目鱼肌在整个站立阶段不断缩短,在被认为最适合做功的条件下充当做功发生器:高力-长度潜力和高焓效率。股外侧肌促进了肌腱的能量储存,并几乎等长地收缩到接近最佳长度,从而产生了高力-长度-速度潜力,有利于经济地产生力量。这两块肌肉的有利运行条件是肌腱和肌腱单元的有效长度和速度解耦的结果,这主要是由于肌腱的柔顺性,在比目鱼肌中,肌腱旋转也起着一定作用。
1引言有许多电子设备利用各种形状的3-D结构,例如颗粒,圆锥体,光子带隙晶体,磁倍率随机访问记忆(MRAM)和纳米电机械系统(NEMS)(NEMS)。这些结构的特性对它们的尺寸特征(例如形状,大小等)表现出很高的灵敏度,这通常会导致功能增强。由于这些3D结构中的特征大小降低了纳米级,因此在制造中实现高维准确性和可靠性变得越来越具有挑战性。因此,越来越需要改善这些3-D结构的精确和可靠性。已经提出并采用了各种方法,以试图制造具有纳米级特征的3-D结构。They include plasma etching, 1 electrodeposi- tion with a special patterning and biasing of the seed layer, 2 direct and laser-assisted chemical etching, 3 ultrasonic machining, 4 electro-discharge machining, 5 layer-by-layer laser-induced polymerization, 6 nanoimprint lithography, 7 , 8 hole-area modulation, 9 local nanolithography by atomic force显微镜(AFM),10平行纳米氧化,11等。