摘要:风能和太阳辐射具有间歇性和随机波动性,会影响电网综合运行模式下混合系统的运行稳定性。本研究研究了一种使用电池和双层电容器 (EDLC) 的电网综合风能/光伏混合系统缓解输出功率变化的平滑控制方法。当太阳能和风能系统产生的功率变化很大时,电池和 EDLC 会吸收混合系统的功率波动,从而平滑提供给电网的功率。这使得可再生能源资源在公用事业系统中的更高渗透率和整合成为可能。逆变器的控制策略是将功率注入具有单位功率因数和恒定直流母线电压的公用事业系统。光伏 (PV) 和风能系统均受控制以获取最大输出功率。为了观察混合系统在实际情况下平滑输出功率波动的性能,考虑了一天的实际场地风速和辐射数据。该控制方法的动态建模和有效性
摘要——可再生能源 (RES) 在配电系统中的渗透对现有电力系统的可靠和安全运行构成了挑战。可持续能源的零星特性以及随机负载变化极大地影响了系统的电能质量和稳定性。因此,需要具有高能量和高功率处理能力的存储系统在微电网中共存。本文针对与超级电容器和电池混合存储相结合的并网光伏系统设计了一种高效的能量管理结构。组合的超级电容器和电池存储系统可控制平均和瞬时功率变化,从而快速控制直流母线电压,即稳定系统并有助于实现光伏功率平滑。通过检查电池的充电状态 (SOC) 来实现电网和电池之间的平均功率分配,并提出了一种有效且高效的能量管理方案。此外,使用超级电容器可在发电功率和负载需求出现意外差异时减轻电池系统的电流压力。模拟研究证实了所提出的能源管理方案的性能和功效。
传统发电方式正经历重大变革,而可再生能源微电网在能源结构转型中发挥着关键作用。本文研究了基于积分终端和快速积分终端滑模控制的集中式非线性控制器设计,用于以可再生分布式发电机作为主电源、燃料电池 (FC) 作为次电源、电池-超级电容器作为混合储能系统 (HESS) 的混合交直流微电网。首先,建立混合交直流微电网的详细数学模型。然后,设计控制器,主要目标是确保孤岛和并网模式下直流和交流母线电压恒定。在并网模式下,控制器能够为公用电网提供频率支持。之后,利用 Lyapunov 稳定性标准证明了混合交直流微电网的渐近稳定性。然后,通过在 MATLAB/Simulink 上进行仿真来测试所提出的控制方法的性能和鲁棒性,并将结果与滑模控制器和 Lyapunov 重新设计进行比较。最后,进行实时硬件在环测试以验证所提出框架的有效性。
摘要——如今,直流微电网在可再生能源领域受到青睐。自主直流微电网旨在提供从可再生能源到负载的平稳电力流动。在满足某些负载曲线并将功率维持在所需水平的同时,对功率转换器的控制也非常重要。为了提高直流微电网的弹性,电池存储系统 (BSS) 也被用作提供不间断电源的备用单元。BSS 的主要任务是在负载高于供电功率时补偿功率不足,或在负载需求低于提取功率的情况下存储多余的功率。换句话说,通过消耗和存储电力,BSS 有助于提高系统的灵活性并将主直流母线电压保持在可接受的范围内。本研究引入了基于人工智能 (AI) 的方法来减少实施的传感器数量并控制功率转换器而不会降低效率。在本文中,利用了作为 AI 子集的人工神经网络 (ANN)。减少控制层中的传感器数量使系统更加可靠。为了验证所提系统的有效性,在 MATLAB/Simulink 中进行了离线和在线时域仿真。
摘要 — 可再生能源 (RES) 在配电系统中的渗透对现有电力系统的可靠和安全运行构成了挑战。可持续能源的零星特性以及随机负载变化极大地影响了系统的电能质量和稳定性。因此,需要具有高能量和高功率处理能力的存储系统在微电网中共存。本文针对与超级电容器和电池混合存储相结合的并网光伏系统设计了一种高效的能量管理结构。组合的超级电容器和电池存储系统可控制平均和瞬时功率变化,从而快速控制直流母线电压,即稳定系统并有助于实现光伏功率平滑。通过检查电池的充电状态 (SOC) 来实现电网和电池之间的平均功率分配,并提出了一种有效且高效的能量管理方案。此外,使用超级电容器可在发电功率和负载需求出现意外差异时减轻电池系统的电流压力。模拟研究证实了所提出的能源管理方案的性能和功效。
摘要。最近,储能已成为可再生能源电力系统应用的重要课题。电池是可再生能源、电动汽车和电网连接系统采用的最受欢迎的储能设备之一。在这种情况下,双向 DC-DC 转换器 (BDC) 通过控制电池应用中电池的充电和放电阶段实现双向功率流。因此,考虑到电池的充电状态和电流方向,通过 BDC 的占空比来调节电池电流。在本研究中,设计、分析和模拟了一种具有降压和升压工作原理的非隔离 BDC,并在各种案例研究下进行模拟。在设计的系统中,BDC 控制电池和直流链路之间的双向功率流。具体而言,在降压模式下运行的电池充电阶段,直流链路为电池供电,BDC 使用比例积分 (PI) 控制器调节电池电流。另一方面,在升压模式下电池的放电阶段,当直流电源断开时,电池为直流负载供电,直流母线电压由 BDC 通过 PI 控制器控制。仿真结果显示了不同情况下 BDC 的运行和控制。
摘要 — 由电池和超级电容器 (SC) 组成的多个混合储能系统 (HESS) 被广泛用于直流微电网以补偿功率失配。根据其特定的能量和功率特性,电池和超级电容器分别用于补偿低频和高频功率失配。本文提出了一种借助新型功率缓冲器动态形成多个 HESS 的分散功率分配策略。功率缓冲器是一种结合电容器和双向 DC-DC 转换器的设备,它用作电池和直流母线之间的接口,可轻松实现不同储能单元的即插即用以及有效、高效的功率分配。首先,功率缓冲器和超级电容器通过改进的 IV 下垂控制将功率失配分为低频和高频部分。然后,功率缓冲器根据电池各自的充电状态 (SoC) 将低频失配转移到电池进行补偿,而高频部分则由超级电容器直接处理。该新方案进一步消除了直流母线电压偏差。最后,三个案例研究的实时硬件在环 (HIL) 测试证实了所提出的控制策略的有效性。
摘要:本文旨在从本质上调节电力系统扰动条件下直流微电网的直流母线电压。因此,提出了一种新型最优模型预测超扭转分数阶滑模控制 (OMP-STFOSMC),用于三相交流-直流转换器,可有效提高微电网的稳定性和动态性能。传统的模型预测控制器严重影响动态稳定性,导致过冲、下冲和稳定时间过长。可以用滑模控制器代替这些传统控制器,以适当解决此问题。传统滑模控制器的主要缺点是控制信号中的高频抖动,这会影响系统,并且使其在实际应用中不令人满意且不可行。所提出的 OMP-STFOSMC 可以有效提高控制跟踪性能并减少高频抖动问题。随机分形搜索 (SFS) 算法因其高探索性和良好的局部最优规避能力而被用于最佳地调整控制器参数。考虑不同的运行条件来评估所提出的控制器的动态和无抖动性能。通过比较分析的仿真结果,可以观察到所提出的OMP-STFOSMC具有更好的动态稳定性特性。关键词:直流微电网,跟踪性能,抖动问题,OMP-STFOSMC,SFS算法
本文基于能量分析,提出了一种用于独立直流微电网中基于转换器的可再生能源的新型本地控制方法。所研究的直流微电网包括可再生能源、备用发电单元和基于电池的储能系统,它们通过降压和双向降压-升压转换器连接到公共直流母线。所提出的控制方法通过控制转换器的开关功能来满足微电网输出变量的稳定性以及电流控制和电压调节,而与能源动态无关。通过数学方法利用状态反馈将开关函数的动态分量提取为控制信号。控制输入基于 Lyapunov 稳定性定理设计,通过能量分析保证独立直流微电网中输出变量(直流母线电压和发电电流)的稳定性。所提出的分布式控制器可以很容易地推广为一个平台,其中包含各种独立直流微电网,包括任何类型或数量的分布式发电,例如可再生能源、基于化石燃料的发电和储能单元。这种局部控制方法的其他特点是简单、快速、全面和独立于分布式发电。通过在 MATLAB/SIMULINK 环境中的仿真验证了所提出的控制器的动态性能评估。结果验证了所提出的控制策略在各种运行条件下的准确性和稳定性。
摘要 由于其多种优势(尤其是体积小、重量轻),电力电子变压器在铁路应用中引起了显著的关注。本文主要致力于开发一种基于完全可编程门阵列 (FPGA) 的电力电子变压器控制平台,用于上述应用中。由于 FPGA 的并行处理可以加快控制算法的执行速度,因此可以保证可靠的运行(这在牵引应用中至关重要)。为此,构建了一种输入串联输出并联电力电子变压器结构,并在 Xilinx FPGA 控制平台上设计和实现了电力电子变压器在牵引应用中可靠稳定运行的各种考虑因素,例如安全启动和双向功率流,以及所需的控制和脉冲生成方案。此外,还提出了一种改进的控制算法,以便以简单、更可靠的方式控制电力电子变压器。该控制方案基于DC-DC-LLC谐振变换器的输出电压而开发,能够有效地控制整流器直流母线电压之和并跟踪输入正弦参考电流,并且所需的传感器数量较少。最后,通过实验测试从各个方面检验了该方案的有效性。