获得稳定且面容量超过 10 mA h cm − 2 的 S 正极是实现高能量密度配置的关键且不可或缺的步骤。然而,增加 S 正极的面容量往往会降低比容量和稳定性,这是由于厚电极中 S 的溶解加剧和可溶性多硫化物的扩散。本文报道了一种独立复合正极的设计,该正极利用 3D 共价结合位点和化学吸附环境来提供 S 物质的限制溶解和阻止扩散的功能。通过采用这种架构,纽扣电池表现出出色的循环稳定性和 1444.3 mA hg − 1(13 mA h cm − 2)的出色比容量,而软包电池配置表现出超过 11 mA h cm − 2 的显著面容量。这种性能与出色的柔韧性相结合,通过连续弯曲循环测试证明,即使在硫负载量为 9.00 mg cm − 2 的情况下也是如此。这项研究为开发具有更高负载能力和卓越性能的柔性 Li-S 电池奠定了基础。
摘要:纳米尺寸的电池型材料应用于电化学电容器中,可以有效减少电导率低、体积变化大带来的一系列问题,但这种方式会导致充放电过程以电容行为为主,造成材料的比容量严重下降。通过控制材料颗粒为合适的尺寸以及合适的纳米片层数,可以保留电池型行为而维持较大的容量。本文在还原氧化石墨烯表面生长典型电池型材料Ni(OH)2,制备复合电极,通过控制镍源的用量,制备出合适Ni(OH)2纳米片尺寸和合适层数的复合材料,在保留电池型行为的情况下获得了高容量的电极材料,制备的电极在2 A g −1 时比容量为397.22 mA hg −1。当电流密度增加到20 A g − 1 后,保持率高达84%。制备的非对称电化学电容器在功率密度为1319.86 W kg − 1 时的能量密度为30.91 W h kg − 1,20 000次循环后保持率可达79%。我们主张通过增加纳米片的尺寸和层数来保留电极材料电池型行为的优化策略,这可以显著提高能量密度,同时结合电化学电容器的高倍率性能的优势。■ 介绍