不同的气体传感设备在内,包括化学剂,[8]晶体管,[9]和光传感器。[10]此外,已经设计了基于小分子的分子半导体的绝缘子杂音,以实现稳定的气体检测。[11]在各种材料和设备构造中,基于CP的化学仪被认为是气体传感的最简单方法之一。[12] CP在设备制造过程中作为感应层沉积,CPS和分析物气体分子之间的相互作用会导致感应层的电导率变化,可以轻松监测。敏感性是化学固定器传感性能的最重要参数之一,迄今为止已经开发了各种方法来改善它。在所有报告的方法中,纳米结构被视为一种有效的策略,因为具有较高表面积面积的形态 - 体积比的形态可以通过提高气体分子的扩散速率进入基于CP的传感层和提供更多的结合位点,从而提高灵敏度。为了创建纳米结构的表面,CPS过去曾通过复杂的过程进入不同的结构,包括纳米管,纳米线,纳米管,纳米骨,纳米颗粒和纳米纤维。[13]
摘要:像人类一样行动的移动机器人应该拥有多功能灵活的传感系统,包括视觉、听觉、触觉、嗅觉和味觉。气体传感器阵列(GSA),也称为电子鼻,是机器人嗅觉系统的一种可能解决方案,可以检测和区分各种气体分子。应用于电子鼻的人工智能(AI)涉及一组不同的机器学习算法,这些算法可以通过分析来自 GSA 的信号模式来生成气味印记。GSA 和 AI 算法的结合可以使智能机器人在许多领域发挥强大的功能,例如环境监测、气体泄漏检测、食品和饮料生产和储存,尤其是通过检测不同类型和浓度的目标气体进行疾病诊断,具有便携性、低功耗和易于操作的优势。令人兴奋的是,配备“鼻子”的机器人将充当家庭医生,守护每个家庭成员的健康,保证家庭安全。在本综述中,我们总结了 GSA 制造技术和人工嗅觉系统中采用的典型算法的最新研究进展,探索了它们在疾病诊断、环境监测和爆炸物检测中的潜在应用。我们还讨论了气体传感器单元的主要局限性及其可能的解决方案。最后,我们展示了 GSA 在智能家居和城市领域的前景。
摘要:航天器飞掠可以让我们了解行星物体气体包层的化学成分。在飞掠过程中,相对相遇速度通常为几公里/秒到几十公里/秒。当速度超过 5 公里/秒时,现代质谱仪在分析快速相遇的气体时会受到超高速撞击引起的碎裂过程的影响,导致在分析复杂分子时得到不明确的结果。在这种情况下,仪器使用前室,进入的物质在前室中与室壁发生多次碰撞。这些碰撞导致气体分子减速和热化。然而,这些碰撞也会解离分子键,从而使分子碎裂,并可能形成新的分子,使科学家无法推断出采样气体的实际化学成分。我们开发了一种新型飞行时间质谱仪,它可以处理高达 20 公里/秒的相对相遇速度,而无需前室及其相关的碎裂。它一次性分析 m/z 1 至 1000 的完整质量范围。这项创新可实现对复杂(有机)分子的明确分析。应用于土卫二、木卫二或木卫一,它将为探索太阳系提供可靠的化学成分数据集,以确定其状态、起源和演化。
摘要:柔性金属有机骨架 (MOF) 在外界刺激下会发生可逆的结构转变。某些 MOF 的一个有趣特性是它们能够响应特定客体而弯曲,从而实现选择性分离。在这里,我们介绍了 MUF-15-OMe ([Co 6 (μ 3 -OH) 2 (ipa-OMe) 5 (H 2 O) 4 ]),它是 MUF-15 的一种变体,由通过 5-甲氧基间苯二甲酸酯 (ipa-OMe) 配体连接的六核钴 (II) 簇组成。MUF-15 本身具有间苯二甲酸酯连接基,在吸收常见气体时不灵活。另一方面,MUF-15-OMe 在压力低于 1 bar 时会弯曲 CO 2 和 C2 烃类等气体,这由其气体吸附等温线中的不同步骤揭示。计算分析表明,潜在机制涉及骨架连接体中羧基之一的部分分离。通过在多元骨架中用间苯二甲酸酯配体替换部分 ipa-OMe,可以调节诱导骨架动力学所需的气压。MUF-15-OMe 的弯曲为吸附特定的额外气体分子打开了空间。这增强了 CO 2 和 N 2 的分离,并使得通过量子筛分能够区分 H 2 和 D 2。通过清楚地说明灵活性如何区分气体混合物,这项研究为使用动态 MOF 进行具有挑战性的分离奠定了基础。
尽管有许多效果来探索H-BN底物上石墨烯的电子结构,但H-BN层在石墨烯对吸附有毒气体分子的吸附行为上的含量仍然很少了解。在此,我们使用了基于密度功能理论(DFT)22,23的第一个原理方法来研究结构稳定性,以及对有毒气体分子吸附的石墨烯/H-BN异质结构的电子和电子传输性能。首先,我们对每个单层进行了DFT优化计算,然后校准了这些异质结构的能量效果,这是这两层之间的层间距离的函数,以获得最轻松的几何形状contriric contriric contration guration guration guration guration guration guration guration guration guration guration guration guration。将最稳定结构的电子性质与单层的电子特性进行了比较。然后,我们研究了原始石墨烯和石墨烯/H-BN的吸附机制,包括有毒气体的吸附,包括CO 2,CO,NO和NO 2。为了提高这些电子计算的可靠性,我们考虑了这些底物与吸附分子之间的VDW相互作用。为了评估石墨烯/H-BN异质结构作为晚期有毒气体传感器的选择性,我们还采用了非平衡性Green的功能形式,使用密度功能方法来计算这些吸附的系统中的电子传输特性。
光纤维传感器由于其高灵敏度,远程能力和对电磁干扰的免疫力而成为一种非常有前途的痕量检测技术。然而,状态或艺术的气体传感器通常使用冗长的光学纤维作为气体吸收细胞或功能材料的涂层来实现更敏感的气体检测,这带来了挑战,例如缓慢的响应和/或较差的选择性,以及对它们在填充空间中使用的限制。在这里,据报道,通过据报道,通过直接的3D微印Fabry-Pérot腔的直接3D微印刷在标准单模光学纤维的末端,通过直接的3D微印。它不仅可以在纤维输出处进行光和气体分子之间的直接相互作用,还可以通过干涉读取方案进行远程询问。长度为66 µm的小插曲,噪声当量等效浓度为160亿亿亿乙炔气体,超快速响应时间为0.5 s。如此小的高性能光热气体传感器是一种方法,可以远程检测痕量气体,用于从反应器监测到医学诊断的无数应用。长度为66 µm的小插曲,噪声当量等效浓度为160亿亿亿乙炔气体,超快速响应时间为0.5 s。如此小的高性能光热气体传感器是一种方法,可以远程检测痕量气体,用于从反应器监测到医学诊断的无数应用。
摘要:基于氮的肥料代表了最常见的施肥工具,尤其是在农作物农业中使用的工具,尽管成本效率低,并且具有很高的负面环境影响。目前,关于尿素对人类健康的影响的信息仍然不足;然而,先前在动物的研究观察到,高尿素浓度暴露会损害包括大脑在内的不同组织。在几种脊椎动物中,与神经元细胞形成相关的关键因素由气体分子,一氧化氮(NO)表示,该因子通过一氧化氮合酶(NOS)的酶促活性从精氨酸转化为瓜氨酸的转化而得出。在斑马鱼中,已知NOS基因的三种不同同工型:NOS1,NOS2A和NOS2B。在本研究中,我们表明NOS1代表了斑马鱼发育的所有胚胎阶段,在大脑和脊髓中具有稳定的高表达的独特同工型。然后,通过使用特定的转基因斑马鱼Tg(HUC:GFP)来标记神经元细胞,我们观察到NOS1在神经元中特异性表达。有趣的是,我们观察到,亚致死剂量的尿素暴露会影响细胞的增殖和表达NOS1的细胞数量,从而诱导凋亡。与未经治疗的动物相比,在尿素处理的动物中,没有观察到大脑没有降低的大脑水平。这一发现代表了第一个证据,表明尿素暴露会影响胚胎发育过程中神经元细胞形成的关键基因的表达。
天然气管道公司正在东南部扩大管道,以服务电力公司的计划,以建立不可持续的新天然气容量。但是,电力公司客户是否为最终提高天然气管道公司将天然气出口到国外的能力的基础设施支付费用,从而增加天然气价格和电费?要回答这个问题,我们需要考虑当国内需求少于供应量的大量气体时,例如在春季和秋季,当我们过渡到太阳能,短时间和长时间的电池存储,陆上和越野范围,陆上和越野风,以及增强的地球疗法时,越来越多的气体分子会发生什么情况。这些天然气分子在整个东南部都有连接管道的途径,有点像一条高速公路,通往墨西哥湾和东海岸液化的天然气(LNG)港口。公用事业与管道公司合同,以保证使用这些分子(称为“公司运输” 1),而电力客户(像我们所有人一样)通过我们的公用事业费率2支付这些昂贵的合同,无论这些合同和管道项目是否真的为我们服务。,随着我们的脱碳,它们将越来越少。虽然过度建筑天然气工厂的公用事业可能会留下搁浅的资产(我们也为这些资产付费),但管道公司也过度建立了气体传输基础设施并且不会损失。通过我们的电费(通过那些公司的运输合同),然后通过其会员液化天然气出口公司获得报酬 - 有时是相同的分子。3实际上,外国比国内客户获得的报酬要多得多。
自诞生以来,立方体卫星就成为了太空网络和探索领域最令人兴奋的技术,因为与同类传统卫星相比,立方体卫星的成本和复杂性更低 [1]。这使得太空任务的设计和运行周期成倍加快,也增加了人们对太空领域高风险企业的激励 [2]。这些突破为私有化太空网络时代铺平了道路,例如 SpaceX Starlink 星座 [3]。要充分释放太空网络的潜力,需要更高的数据速率和高度紧凑的设备 [4]。从这个角度来看,太赫兹 (THz) 频段(从 0.1 THz 到 10 THz)是一种巨大的频谱资源,可用于开发可用于下一代立方体卫星的无线技术 [5]。 THz 波段技术非常适合立方体卫星,因为它具有可维持极高数据速率的大型连续带宽,以及 THz 频率的亚毫米波长,这自然会产生高度紧凑的设备 [6]。然而,THz 频率下非常高的路径损耗仍然是电磁 (EM) 频谱这一部分未被充分利用的关键原因。一方面,THz 频率会因与特定频率下的某些气体分子(主要是水蒸气)的共振峰而遭受吸收损耗 [7]。尽管如此,如 [8] 中详细讨论的那样。太空中没有大气介质,因此吸收损耗减少,使 THz 波段成为卫星间通信链路的理想选择。同时,由于低地球轨道 (LEO) 内的大气存在减少,可以通过适当选择避免这些吸收峰的设计频率来减轻上行链路和下行链路期间的吸收损耗。另一方面,THz 频率的波长非常小,导致
在地面试验j7,8,91和飞行试验[lO,ll]中,高压太阳能电池阵列上出现了许多电弧现象。迄今为止,唯一的理论假设来自文献[112]。在这项研究中,有人提出,每个互连器上都有一层薄薄的绝缘污染物。这种污染物可能是由于暴露在空气中而产生的,也可能是在制造过程中产生的。来自空间等离子体的离子被互连器上的负电位吸引。这些离子积聚在表面层,导致层中形成电场。随着层继续充电,内部场变得足够大,足以导致电子发射到空间等离子体中。这种电子流导致层中随后加热和电离。这就是所谓的放电。在本文中,我们集中研究了低地球轨道负偏压太阳能电池阵列的行为,并对观察到的电弧提出了一种新的解释。有人提出,实验观察到的预击穿电流导致中性气体分子从太阳能电池盖玻片的侧面解吸。这些分子在互连线上积聚,并在表面气体层内发生电弧。推导出电压阈值的表达式,并研究了其与气体和几何特性的关系。电压阈值与等离子体密度无关,而与太阳能电池互连连接的几何结构密切相关。第 2 节回顾了实验工作,并描述了低地球轨道的等离子体和中性环境。第 3 节开发了击穿模型并获得了击穿阈值。第 4 节讨论了气体和几何参数的关系以及实验数据在该理论中的应用。最后,在最后一节中,提出了一些实验测试来阐明理论模型。