摘要:洪加加(Hunga Tonga)爆发后,注入平流层的水蒸气量是前所未有的,因此目前尚不清楚这可能对地面气候意味着什么。我们使用化学 - 气候模型模拟来评估类似于HTHH引起的平流层水蒸气(SWV)异常的长期表面影响,但忽略了喷发量相对较小的气溶胶载荷。模拟表明,SWV异常会导致北半球冬季的北半球陆地的强烈而持续的变暖,在喷发几年后,澳大利亚的澳大利亚冬季冷却,表明大型SWV强迫可以在衰老的时间尺度上产生表面影响。我们还强调,对SWV异常的表面响应比由于温室强迫而引起的简单变暖更为复杂,并且受到区域循环模式和云反馈等因素的影响。需要进一步的研究,以充分了解SWV异常的多年效应及其与Elniño(如南方振荡)等气候现象的关系。
摘要:气候模型代表热带风暴轨迹的能力对于提供有用的预测至关重要。在先前的工作中,发现北半球的热带风暴轨迹的表示已从耦合模型比较项目(CMIP)的第5阶段改善。在这里,我们通过将仅大气模拟(AMIP6)与历史库型模拟(CMIP6)进行了对比,从而研究了CMIP第6阶段模型中的剩余和持久偏差。对AMIP6和CMIP6模拟的比较表明,冬季跨北部Paci -fean的耦合模拟中海面温度(SST)的偏见改变了大气温度梯度,这与风暴轨迹的赤道偏置有关。在北大西洋中,旋风在耦合的模拟中没有足够的杆子传播,该模拟部分是由格陵兰岛南部的冷SST驱动的,从而减少了潜在的热量。在夏季,中亚和藏族高原的过度加热会降低当地的斜压性,导致更少的气旋形成并从中国东部传播到耦合和大气中的模拟物中。当规定SST时,耦合模型中描述的几种偏差大大减少。例如,北极风暴轨迹的赤道偏置显着减少。然而,在CMIP6和AMIP6中,其他偏见都显而易见(例如,夏季东亚的轨道密度密度和循环发生的持续降低)与其他过程有关(例如,土地表面温度)。
1 AMAP(植物与植被建筑的植物学和建模),蒙彼利埃大学,Cirad,CNRS,CNRS,Inrae,IRD,IRD,Montpellier,法国; 2 UMR Ecofog(Agroparistech,Cirad,CNRS,Inrae,Antilles,Antilles,圭亚那大学),法国库鲁; 3 Cirad,UMR Ecofog(Agroparistech,CNRS,Inrae,Antilles,Antilles,圭亚那大学),法国库鲁; 4奥地利维也纳维也纳大学微生物和环境系统科学中心; 5佛罗里达州佛罗里达州佛罗里达州佛罗里达州佛罗里达州佛罗里达州佛罗里达州的生物科学系; 6英国牛津大学牛津大学环境变革学院地理与环境学院6; 7 Inrae,洛林大学,Agroparisech,Umr Silva,法国南希; 8奥地利维也纳自然资源与生命科学大学植物学研究所; 9美国马里兰州埃奇沃特市史密森尼环境研究中心; 10森林全球地球天文台,史密森尼热带研究所,巴拿马城,巴拿马和11个布鲁塞尔大学,布鲁塞尔,比利时,布鲁塞尔大学