火星的水历史是理解类似地球的行星进化的基础。水作为原子逸出到空间,氢原子的逃逸速度比氘升高,使剩余的D/H比增加了。目前的比率反映了火星总损失。观察火星大气和挥发性进化(Maven)和哈勃太空望远镜(HST)航天器可为H和D提供原子密度,并为H和D的逃生速率。在观察到的每个火星年份附近的大幅增长都与水蒸气的强烈上升相稳定。 短期变化还需要进行热逃逸之外的过程,这可能来自大气动力学和超热原子。 包括从热原子中逃脱的,H和D迅速逃脱,逃生通量受到较低大气的重新调整的限制。 在此范式中,逃脱了水,逃脱原子的D/H比由上升的水蒸气和大气动力学来确定,而不是原子逃生的具体细节。观察火星大气和挥发性进化(Maven)和哈勃太空望远镜(HST)航天器可为H和D提供原子密度,并为H和D的逃生速率。在观察到的每个火星年份附近的大幅增长都与水蒸气的强烈上升相稳定。短期变化还需要进行热逃逸之外的过程,这可能来自大气动力学和超热原子。包括从热原子中逃脱的,H和D迅速逃脱,逃生通量受到较低大气的重新调整的限制。在此范式中,逃脱了水,逃脱原子的D/H比由上升的水蒸气和大气动力学来确定,而不是原子逃生的具体细节。
摘要 — 通过收集和整理历史数据和典型模型特征,使用 Simulink 开发了基于氢能存储系统 (HESS) 的电转气 (P2G) 和气转电系统。详细研究了所提出系统的能量转换机制和数值建模方法。提出的集成 HESS 模型涵盖以下系统组件:碱性电解槽 (AE)、带压缩机的高压储氢罐 (CM 和 H 2 罐) 和质子交换膜燃料电池 (PEMFC) 电堆。基于典型的 UI 曲线和等效电路模型建立了 HESS 中的单元模型,用于分析典型 AE、理想 CM 和 H 2 罐和 PEMFC 电堆的运行特性和充电/放电行为。在配备风力发电系统、光伏发电系统和辅助电池储能系统 (BESS) 单元的微电网系统中模拟和验证了这些模型的有效性。 MATLAB/Simulink 仿真结果表明电解器电堆、燃料电池电堆及系统集成模型能够在不同工况下工作。通过测试不同工况下 HESS 的仿真结果,分析了氢气产出流量、电堆电压、BESS 的荷电状态 (SOC)、HESS 的氢气压力状态 (SOHP) 以及 HESS 能量流动路径。仿真结果与预期一致,表明集成 HESS 模型能够有效吸收风电和光伏电能。随着风电和光伏发电量的增加,HESS 电流增加,从而增加氢气产出量来吸收剩余电量。结果表明 HESS 比微电网中传统 BESS 响应速度更快,为后期风电-光伏-HESS-BESS 集成提供了坚实的理论基础。
世界正在进行能源转型,以减少二氧化碳排放和减缓气候变化 [1]。正在进行的最重要的行动是加强可再生能源的作用、提高能源效率、实现运输和供暖部门的电气化以及能源储存 [2、3]。氢经济是一种重要的可持续替代方案,将有助于实现运输、供暖部门和能源储存的脱碳 [4]。新冠疫情和乌克兰战争进一步增加了欧洲和西方国家投资氢经济作为化石燃料替代品的兴趣 [5]。氢气显著降低了地缘政治风险,因为它极大地增加了未来能源供应商的多样性 [6]。氢气是一种特别有趣的天然气替代品,因为它也是一种灵活的电力来源,并且可以使用现有的天然气基础设施 [7]。氢气的体积能量密度低,液化后可实现长距离运输。氢气液化会消耗大量能源。现有的氢气液化厂每生产一千克氢气约需 13 千瓦时电力,这约占氢气储存能量的 30% [8]。氢气液化的理论最小能耗(1 bar 时 298 K e 20 K)为每千克氢气 3.7 千瓦时电力,相当于氢气储存能量的 9.3% [8]。正在开发的新工艺可以通过磁制冷将能耗降低到每千克氢气 6 千瓦时电力,效率达到卡诺循环的 50% [9]。用于氢气液化的磁制冷系统的一种可能配置是主动磁再生器 (AMR) 系统。在该系统中,磁性材料通常是一层填充的颗粒床,它们通过一系列磁场循环以提供冷却效果。 AMR 系统已被证明具有很高的冷却能力和效率,使其成为一种很有前途的 H 2 液化技术[10]。显著提高液化效率的另一个方面是规模效应。例如,氢气液化量从每天 100 吨增加到 1000 吨,可将液化成本从 2 美元/千克 H 2 降低到 1 美元/千克 H 2 [8]。液态空气已被提议用于不同目的的冷能回收[11]。例如,使用液态空气储能 (LAES) 来储存电能,即将热能储存在液态空气中,然后用于发电[12]。液态空气已被提议用于液化天然气 (LNG) 工艺的冷能回收,类似于本文提出的方案[13]。使用
世界正在进行能源转型,以减少二氧化碳排放和减缓气候变化 [1]。正在进行的最重要的行动是加强可再生能源的作用、提高能源效率、实现运输和供暖部门的电气化以及能源储存 [2、3]。氢经济是一种重要的可持续替代方案,将有助于实现运输、供暖部门和能源储存的脱碳 [4]。新冠疫情和乌克兰战争进一步增加了欧洲和西方国家投资氢经济作为化石燃料替代品的兴趣 [5]。氢气显著降低了地缘政治风险,因为它极大地增加了未来能源供应商的多样性 [6]。氢气是一种特别有趣的天然气替代品,因为它也是一种灵活的电力来源,并且可以使用现有的天然气基础设施 [7]。氢气的体积能量密度低,液化后可实现长距离运输。氢气液化会消耗大量能源。现有的氢气液化厂每生产一千克氢气约需 13 千瓦时电力,这约占氢气储存能量的 30% [8]。氢气液化的理论最小能耗(1 bar 时 298 K e 20 K)为每千克氢气 3.7 千瓦时电力,相当于氢气储存能量的 9.3% [8]。正在开发的新工艺可以通过磁制冷将能耗降低到每千克氢气 6 千瓦时电力,效率达到卡诺循环的 50% [9]。用于氢气液化的磁制冷系统的一种可能配置是主动磁再生器 (AMR) 系统。在该系统中,磁性材料通常是一层填充的颗粒床,它们通过一系列磁场循环以提供冷却效果。 AMR 系统已被证明具有很高的冷却能力和效率,使其成为一种很有前途的 H 2 液化技术[10]。显著提高液化效率的另一个方面是规模效应。例如,氢气液化量从每天 100 吨增加到 1000 吨,可将液化成本从 2 美元/千克 H 2 降低到 1 美元/千克 H 2 [8]。液态空气已被提议用于不同目的的冷能回收[11]。例如,使用液态空气储能 (LAES) 来储存电能,即将热能储存在液态空气中,然后用于发电[12]。液态空气已被提议用于液化天然气 (LNG) 工艺的冷能回收,类似于本文提出的方案[13]。使用