具有优异防水性/粘附性的超疏水/超亲水表面(SBS/SLS)在学术研究和工业环境中都具有重要意义,因为它们在微小液滴和气泡操控中具有有趣的功能。然而,大多数涉及 SBS/SLS 的操控策略仅限于大面积制造或复杂的形貌设计,这明显阻碍了它们的实际应用。在本文中,我们通过一步飞秒激光烧蚀设计和制造了超亲水不锈钢板下方的超疏水聚二甲基硅氧烷窄化双轨(SNDR)。我们的 SNDR 轨道能够在水下自发地、单向地从宽端向窄端输送不同体积的气泡,即使它们被弯曲也是如此。进一步讨论了不同几何双轨配置在气泡输送性能中的力学分析。最后,我们通过实验证明了在多个 SNDR 组合上以设计的体积比无损混合气泡的惊人能力。该方法简单、灵活,具有广泛的潜在应用,如界面科学和微流体中的智能气泡传输、混合和可控化学反应。
摘要................................................................................................................................................ii
我们采用完全自洽的横向分辨 Hartree-Fock 近似,以数值方式处理近宏观样本尺寸的量子霍尔区域中较高朗道能级的电子配置。在低无序性下,我们发现空间分辨的条纹和气泡状电荷密度调制,并展示了它们如何根据填充因子出现。这些边界区域的微观细节决定了将电荷密度调制对齐为条纹或气泡的几何边界条件。使用非平衡网络模型模拟传输,在接近半填充的条纹区域中,注入电流的方向具有明显的各向异性。我们获得的条纹周期为 2.9 个回旋半径。我们的结果提供了对其在强磁场中后果的直观理解,并表明在长度尺度上研究时,整数量子霍尔区域中的许多粒子物理学占主导地位。
理解单个气泡尺度上的动力学行为对于理解空化流量特性至关重要。在这项研究中,已经对单独的邻近壁液液的折断引起的冲击波进行了实验和数值分析。使用高速摄影和阴影图技术研究了近壁气泡塌陷引起的冲击波特征。使用OpenFoam CavitatingFoAM求解器进行了近壁液液塌陷诱导的冲击波动力学。(1)冲击波显示基本对称分布。沿矢状直径降低的压力最大值。与初始冲击波相比,在壁附近产生的第二个冲击波的强度降低了约21.2%。模拟波速与实验数据表现出很高的一致性,计算出的误差低于7.9%。(2)冲击波在水中传播的压力和速度分别表现出功率功能和指数衰减功能,它们在距离上传播时。和速度的扰动曲线与冲击波传播的方向对齐。此结果表明冲击波充当速度场中产生干扰的催化剂。(3)构建近壁液泡塌陷波能的转化关系。在第一次崩溃期间,近壁空气泡平均损失了其能量的85%。这允许评估空化引起的冲击波对刚性表面的侵蚀影响。
● 该视频在 YouTube 上,许多地方当局和学校都屏蔽了它。在讲课之前,请确认您可以访问。 ● 该视频提到了 Facebook,许多学习者可能不会使用它。在播放视频之前,请解释他们在视频中看到的技巧适用于所有社交媒体平台,例如 Instagram、YouTube 和其他网站。您可能还想提到 Facebook 拥有 Instagram,因此同样的原则也适用!
摘要 纳米压印光刻(NIL)是一种能够实现低成本、高通量纳米加工的新兴技术。近年来,NIL 的主要发展方向是高通量和大面积图案化。紫外固化型 NIL(UV NIL)可以在室温和低压下进行。UV NIL 的一大优势是它不需要真空,大大简化了工具构造,从而无需真空操作的高精度工作台和大型真空室。然而,非真空环境下的一个关键问题是气泡的形成问题,即气泡能否从光刻胶中完全去除。本文对非真空环境下 UV NIL 中采用液滴涂抹法形成气泡的情况进行了实验研究,研究了液滴体积和涂抹点数量对气泡形成的影响。
免责声明 本文件为美国政府机构赞助工作的记录。美国政府、劳伦斯利弗莫尔国家安全有限责任公司及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或劳伦斯利弗莫尔国家安全有限责任公司对其的认可、推荐或支持。本文表达的作者观点和意见不一定代表或反映美国政府或劳伦斯利弗莫尔国家安全有限责任公司的观点和意见,不得用于广告或产品代言目的。
气泡在沸腾过程中的成核、生长、聚结和脱离是影响传热和散热性能的重要现象。观察气泡行为是理解沸腾传热机理的重要方法。本研究了单个气泡在 SiO 2 涂层表面从不同直径的孤立人工空腔中成核和脱离的动力学。实验在 FC-72 中进行,饱和压力从 0.75 bar 到 1.75 bar。使用高速摄像机研究了气泡在成核过程中的行为。在完整的气泡生长期内,FC-72 气泡呈球形。在初始生长期后,它与沸腾表面的唯一接触是通过我们所说的狭窄的“蒸汽桥”。接触面积的大小受空腔直径的影响:空腔口越大,气泡脱离直径越大。气泡脱离直径从 20 µm 腔体直径的 0.45 mm 增加到 70 µm 腔体直径的 0.61 mm。此外,更高的饱和压力将产生具有较小脱离直径的气泡:它们从 0.75 bar 的 0.62 mm 减小到 1.75 bar 的 0.47 mm。在腔体直径和饱和压力相似的情况下,气泡脱离直径不会因过热度的不同而发生显著变化。气泡脱离频率随过热度的增加而线性增加。虽然压力对气泡脱离频率有限制作用,但另一方面,较大的腔体直径会导致较低的气泡脱离频率。
图。2。BubbleId提取的特征显示(a)每个单独气泡的单个气泡特征,包括气泡ID,直径,固定状态和界面形态,((b)空间平均信息的信息,包括气泡计数,附着的蒸气分数以及每个框架的总蒸气分数以及每个框架的总蒸气分数以及(C)动态特征,包括气泡出发率在内。(a)和(b)中的示例特征来自13.97 w/cm 2的热通量时的沸腾-1,(c)的数据来自沸腾-1和沸腾-2。