高性能功能材料制造将扩大规模,集团的目标是在 2025 财年实现 600 亿日元的净销售额。我们将努力扩大我们主要业务的收入基础,提供更多 JGC 开发的化学催化剂、硬盘抛光纳米颗粒、半导体制造设备材料和其他产品。另一项投资将是未来和下一代业务发展的战略投资。投资将针对精细化工产品和氮化硅基板设施的开发以及其他应用。开发还将包括碳回收催化剂、全固态电池电解质和骨再生材料。
垂直腔面发射激光器 (VCSEL) 是众多工业和消费产品中非常重要的光源。主要应用领域是数据通信和传感。数据通信行业使用基于 GaAs 的 VCSEL 进行光学互连,这是一种短距离光纤通信链路,用于在数据中心和超级计算机内的单元之间以高速率传输大量数据。在传感领域,VCSEL 广泛应用于消费产品,如智能手机(例如面部识别和相机自动对焦)、计算机鼠标和汽车(例如手势识别和自动驾驶的激光雷达)。在这项工作中,我们开发了一种基于物理的先进数据通信 VCSEL 等效电路模型。该模型有助于与驱动器和接收器 IC 进行协同设计和协同优化,从而实现具有带宽受限 VCSEL 和光电二极管的更高数据速率收发器。该模型还有助于理解 VCSEL 内的每个物理过程如何影响 VCSEL 的静态和动态性能。它已被用于研究载流子传输和捕获对 VCSEL 动力学的影响。这项工作还包括在氮化硅光子集成电路 (PIC) 上微转移印刷基于 GaAs 的单模 VCSEL。这种 PIC 越来越多地用于例如紧凑且功能强大的生物光子传感器。VCSEL 的转移印刷使 PIC 上集成节能光源成为可能。底部发射的 VCSEL 印刷在 PIC 上的光栅耦合器上方,并使用光反馈来控制偏振,以便有效耦合到氮化硅波导。生物传感应用所需的波长调谐是通过直流调制实现的。
多晶硅拉伸试样在北卡罗来纳州微电子中心 (MCNC) 制造,并在约翰霍普金斯大学应用物理实验室进行测试准备。MCNC 的 DARPA 支持的多用户 MEMS 工艺 (MUMP) 是制造表面微机械设备常用的典型工艺。两层多晶硅用于形成 MEMS 设备的结构元件。多晶硅层由磷硅酸盐玻璃 (PSG) 牺牲层隔开,并通过一层氮化硅与支撑硅基板隔离。最后的金属层定义了设备的电触点。当设备制造完成后,PSG 层会溶解在蚀刻溶液中以释放机械结构。
由于环保法规和节能需求[1–5],功率模块基板需要将铝或铜等金属层键合到氮化铝 (AlN)、氮化硅 (Si 3 N 4 ) 或氧化铝 (Al 2 O 3 ) 等陶瓷绝缘体上。根据基于金属层和键合方法的分类,这些基板称为直接键合铝 (DBA) 基板[1, 6, 7]、直接键合铜 (DBC) 基板[8, 9] 和活性金属键合 (AMB) 基板[10–15]。AMB 基板是通过使用钎料金属(例如 Ag-Cu-Ti 基合金)将铜键合到 AlN 上而制成的。这些系统中的 Cu/AlN 界面结构以 Ag-Cu 合金层和
•领导和指导图片工程团队。•光子组件(主动和被动)的建模,仿真,设计和布局以及硅光子学,磷化物,磷化二硅,氮化硅,二氧化硅等中的电路。•铸造厂和软件提供商接口。•对技术人员,实习生和/或其他熟练技术人员执行的技术任务的监督。•在准备客户和研发建议以及项目任务方面的协作。•客户接口:电视和会议,项目管理。•支持招募新员工。•在基础架构方面维持和确定需求。•计划和监视图片设计团队中的资源和活动。•有助于持续改进与团队相关的流程,例如工程和文档最佳实践和工具的使用。
最近在光学和光子学方面取得了突破,导致了非重点设备和材料的显着进步。研究人员已经证明了实现光学隔离的各种方法,包括磁光隔离器,非逆地相位变速器和声学系统。研究表明,可以使用IIII-V-niobate放大器和激光器(De Beeck等,2021)以及氮化硅平台(Yan等,2020)来实现综合波导隔离器。这些设备可实现有效的光学通信和传感应用。此外,研究人员还探索了在硅光子系统中使用微量的,这可以导致紧凑和集成的光子溶液(Shu等,2022; Shen等,2020)。其他研究的重点是开发针对平面波导隔离器的非重粒子材料和设计(Srinivasan&Stadler,2018)。此外,研究人员还研究了在不使用磁光材料的情况下实现光学分离的各种方法。这些方法包括合成磁力和储层工程(Fang等,2017),电动驱动的Acousto-Optics(Kittlaus等,2021)以及声子介导的光子自动镇分布(Sohn等,2021)。总体而言,这些非重点设备和材料中的这些进展对用于光学通信,传感和其他应用的紧凑,集成光子系统的开发具有重要意义。最近的一项研究证明了用于基于芯片的激光雷达技术的非重点脉冲路由器的发展[1]。这项创新基于光学隔离器和循环器的先前研究,这些创新已被证明是通过参数放大[2]和KERR效应的固有非交流性[3]来实现的。其他研究探索了微孔子来创建隔离器和循环器[4],以及在对称微腔中的可重构对称性激光[5]。研究人员还研究了用于频率梳子产生和低功率启动的高Q氮微孔子[6,7]。已经报道了磷化磷化物非线性光子学的综合凝固膜的发展,以及基于触觉的Kerr非线性综合光子学[8,9]。还研究了高Q硅碳化物微孔子中的光学KERR非线性,以及硅碳化物纳米光子学中的光学参数振荡[10,11]。进一步的研究集中于具有高第二谐波产生效率的定期粘性薄膜硅锂微孔谐振器[12]。单片硅锂光子电路已为Kerr频率梳子的产生和调制开发[13]。研究还研究了由于动态互惠性而引起的非线性光学隔离器的局限性[14],以及非线性谐振器中反传播光的对称破坏[15]。已报道了非线性微孔子中自发性手性的实验证明,以及基于氮化硅和非线性光学硅Hydex的新型CMOS兼容平台[16,17]。研究还探索了稀薄的氮化硅同心微孔子中的分散工程和频率梳子的产生[18]。据报道,探测材料吸收和集成光子材料的光学非线性,以及解决硅微孔谐振器设备的热挑战[19,20]。最后,已经证明了镜子对称的片上频率循环,以及由硅芯片上带光子跃迁引起的电动驱动的非转换的非逆向性[21,22]。使用微孔调制器的光学隔离也已经探索[23]。注意:我在试图维护原始含义和上下文的同时解释了文本。但是,为了清楚起见,可能已经省略或改写了一些次要细节。研究人员刘和团队开发了一种大规模生产高质量氮化硅光子电路的方法,以最低的损失率以最低的损失率实现了出色的性能。在他们最近在《自然传播》中的出版物中详细介绍了这一突破。
样品持有人的主要任务是将样品保持在稳定的位置。它也可以配备功能单元,例如加热器或液体腔室。扫描头用于固定悬臂并将其移到样品上。通常,压电驱动器用作精确的电动机,在X和Y方向上扫描样品。z方向上的运动通常也由压电电动机执行。1扫描头最重要的部分是尖端,该尖端位于小悬臂末端。悬臂大约只有头发宽(0.1毫米),通常由硅或氮化硅制成(Si 3 N 4)。尖端本身通常具有4-30 nm的半径(见图2 a)。四季度光电二极管用作从悬臂背面反射的激光的检测单元(见图2 b)。
摘要。通过等离子体增强化学气相沉积 (PECVD) 方法沉积薄膜是制造 MEMS 或半导体器件的关键工艺。本文全面概述了 PECVD 工艺。在简要介绍 PECVD 反应器的主要层及其应用(例如氧化硅、TEOS、氮化硅、氮氧化硅、碳化硅、非晶硅、类金刚石碳)之后,介绍了这些层。分析了工艺参数(例如腔体压力、衬底温度、质量流速、RF 功率和 RF 功率模式)对沉积速率、膜厚度均匀性、折射率均匀性和膜应力的影响。微机电系统 (MEMS) 和半导体器件的薄膜 PECVD 沉积的主要挑战是优化沉积参数,以实现高沉积速率和低膜应力,这在低沉积温度下是可能的。
这项博士后研究将是实现集成氮化硅 (SiN) 光波导 (WG) 和光栅的硅基离子捕获芯片的第一步。它将针对光学频率计量应用,并有可能对多个离子进行单独寻址。实现过程和制造理念还将使其与量子信息处理 (QIP) 和单个量子位的片上光学寻址兼容。对于用于 QIP、原子钟或其他量子传感器的坚固、紧凑甚至可移动的离子阱有着强烈的需求。在此背景下,表面电极 (SE) 离子阱是一项非常有前途的技术,它能够捕获多个离子、操纵单个离子并实现可扩展的离子穿梭。这种陷阱依赖于 2D 电极架构,可轻松与标准洁净室工艺兼容。
摘要:本文介绍了使用不同高介电常数 (高 k) 栅极介电材料的双栅极 (DG) 和栅极环绕纳米线 (GAA) MOSFET 的电气行为。为了研究高 k 介电材料对 DG 和 GAA 的影响,使用 Atlas Silvaco TCAD 工具模拟器件并确定电气特性。本研究选择的高 k 材料是氮化硅 (Si3N4)、氧化铝 (Al2O3)、氧化锆 (ZrO2) 和氧化铪 (HfO2)。栅极介电材料在设计新型高性能纳米级电气器件方面发挥了重要作用。可以观察到,当接近更高的介电常数值时,导通电流增加,而亚阈值斜率 (SS) 阈值电压 (Vth) 和漏电流减少。可以观察到,与其他模拟介电材料相比,HfO2 对 DG 和 GAA MOSFET 都表现出最佳性能。