[1] Du M,Peng X,Zhang H等。地质,环境和生活在世界海洋最深的地方。创新(Camb),2021,2:100109 [2] Stewart HA,Jamieson AJ。HADAL沟渠的栖息地异质性:未来研究的考虑和影响。Prog Oceanogr,2018,161:47-65 [3] Jamieson AJ,Fujii T,市长DJ等。Hadal Trenches:地球上最深的地方的生态。趋势Ecol Evol,2010,25:190-7 [4] Jamieson A.Hadal区域:最深的海洋中的生命[M]。剑桥:剑桥大学出版社,2015年[5] Glud RN,WenzhöferF,Middelboe M等。地球上最深的海洋沟中的沉积物中的微生物碳更换率很高。nat Geosci,2013,6:284-8 [6] Glud RN,Berg P,Thamdrup B等。HADAL沟渠是深海早期成岩作用的动态热点。社区地球环境,2021,2:21 [7]WenzhöferF,Oguri K,Middelboe M等。底栖碳矿化中的矿物质矿化:原位评估2微量精细的测量值。深海Res 1 Oceanog Res Pap,2016,116:276-86 [8] Nunoura T,Nishizawa M,Kikuchi T等。分子生物学和同位素生物地球化学预后,硝化驱动的动态微生物氮循环在hospelagic沉积物中。环境微生物,2013,15:3087-107 [9] Nunoura T,Takaki Y,Hirai M等。HADAL生物圈:对地球上最深海洋中微生物生态系统的洞察力。 Proc Natl Acad Sci u S A,2015,112:E1230-6 [10] Thamdrup B,Schauberger C,Larsen M等。HADAL生物圈:对地球上最深海洋中微生物生态系统的洞察力。Proc Natl Acad Sci u S A,2015,112:E1230-6 [10] Thamdrup B,Schauberger C,Larsen M等。Anammox细菌驱动Hadal沟槽中的固定氮损失。Proc Natl Acad Sci u S A,2021,118:E2104529118 [11] Liu S,Peng X. Hadal环境中的有机物成分:来自Mariana Trench Sediments的孔隙水地球化学的见解。深海Res 1 Oceanogr Res Pap,2019,147:22-31 [12] Cui G,Li J,Gao Z等。在挑战者深处的深渊和哈达尔沉积物中微生物群落的空间变化。peerj,2019,7:e6961 [13] Peoples LM,Grammatopoulou E,Pombrol M等。从两个地理分离的哈达尔沟中的沉积物中的微生物群落多样性。前微生物,2019,10:347 [14] Li Y,Cao W,Wang Y等。在玛丽安娜南部沟渠沉积物中的微生物多样性。J Oceanol Limnol,2019,37:1024-9 [15] Nunoura T,Nishizawa M,Hirai M等。从挑战者深处的沉积物中的微生物多样性,玛丽安娜沟。Microbes Environ,2018,33:186-94 [16] Jian H,Yi Y,Wang J等。居住在地球上最深海洋的病毒的多样性和分布。ISME J,2021,15:3094-110 [17] Hiraoka S,Hirai M,Matsui Y等。 微生物群落和对的反式沉积物的地球化学分析ISME J,2021,15:3094-110 [17] Hiraoka S,Hirai M,Matsui Y等。微生物群落和对
摘要。我们比较了三个生物地理模型(BI0ME2,动态全球植物地理模型(Doly)和映射的大气层土壤系统(MAPS))和三个生物地球化学模型(Biome-BGC(Biome-BGC(5iogeochochecles),Century Centrive Cycles和Terrestrial Ecosystem Modeliation coperiation cosials Coreriatiountious conericious conericious and Coniountious conecorers,比较了三个生物地理学模型(BI0ME2,动态全球植物地理模型(Doly)和映射的大气层土壤系统(MAPS))。我们还比较了这些模型在加倍的CO 2和一系列气候场景下的模拟。在当代条件下,生物地理模型成功模拟了主要植被类型的地理分布,并具有相似的森林面积估计值(占美国群岛的42%至46%),草原(17至27%),稀树草原(15至25%)(15至25%)和灌木丛(14至18%)。生物地球化学模型估计相似的大陆级净初级生产(NPP; 3125至3772 x 10 ^^ GC Yr'^)和总碳存储(108至118 x 10*^ GC),以实现现代条件。在三种通用循环模型(俄勒冈州立大学(OSU),地球物理流体动力学实验室(GFDL)和英国气象办公室(UKMO)产生的双重co 2和相关平衡峰的场景中,所有三个生物地理学模型均显示了整个森林区域的差异(在森林中均均均依赖于3.在3.之间均均依赖于3.之间,这均依赖于3.之间的三个生物地理学模型(UKMO)。由于降水量大大增加,在GFDL方案下,所有三种模型(BI0ME2,Doly和Maps)的唯一一致收益在GFDL方案下。在UKMO,DOLY下的森林区域丢失了森林区域,在UKMO和OSU下的BI0ME2下的森林区域。发生森林面积估计的可变性是因为生物地理模型的水文循环对温度和CO 2的升高具有不同的敏感性。通常,在融合气候变化和升高的CO 2浓度时,生物地理模型产生了广泛的结果。在这些情况下,由生物地球化学模型估计的NPP在2%(具有UKMO气候的Biome-BGC)和35%(具有UKMO气候的TEM)之间增加。总碳存储的变化范围从33%的损失(具有UKMO气候的Biome-BGC)到16%的增长(OSU气候下降)。NPP和碳存储的世纪反应是正面的,并且对Biome-BGC和TEM的响应进行了中间。发生碳循环反应的可变性是因为生物地球化学模型的水文和氮气周期对温度和CO 2的升高具有不同的敏感性。当生物地理模型的植被分布运行时,NPP的范围从没有反应(Biome-BGC具有UKMO气候的所有三种生物地理模型植被)到增加40%(OSU气候的地图植被的TEM)。总碳储存响应范围从39%的降低(具有UKMO气候的MAPS植被)到增加32%(OSU和GFDL气候的地图植被的TEM)。Biome-BGC与MAPS植被的UKMO反应主要是由于森林面积下降和温度引起的水胁迫引起的。TEM与地图植被的OSU和GFDL响应主要是由森林膨胀和温度增强的氮循环引起的。