这项工作旨在评估盐生植物 Sesuvium portulacastrum (L.) 对某些植物和人类病原体的抗菌潜力。S. portulacastrum 的植物部分是从印度安得拉邦卡基纳达附近 Coringa 保护森林的红树林栖息地收集的。使用索氏提取装置,将植物部分干燥并用己烷、氯仿、甲醇和水成功获得提取物。琼脂孔扩散法已用于确定植物提取物对某些革兰氏阳性菌(枯草芽孢杆菌、巨大芽孢杆菌和嗜酸乳杆菌)、革兰氏阴性菌(大肠杆菌、产气肠杆菌、阴沟肠杆菌和肺炎克雷伯菌)和真菌种类(白色念珠菌、毛霉、立枯丝核菌、匍匐根霉和酿酒酵母)的抗菌活性。与甲醇和水提取物相比,己烷、氯仿提取物表现出最低的抗菌活性。S. portulacastrum 的水提取物对所有细菌和真菌菌株表现出明显的抗菌活性。这表明这种盐生植物具有可以对抗微生物的抗菌化合物,它们可用于治疗由病原微生物引起的传染病。关键词:盐生植物、抗菌活性、琼脂井扩散法、Sesuvium portulacastrum。戈达瓦里河口。
从受感染的大肠杆菌菌株W3350中分离出双链DNA(CL857 IND1 SAM7)分离出双链DNA。分子量为31.5 x 10e6 daltons,长度为48,502个碱基对。通过凝胶过滤从热诱导的溶菌原大肠杆菌CL857 S7中分离出噬菌体。通过苯酚/氯仿提取从纯化的噬菌体中分离出DNA,并透析透析于10mm Tris-HCl(pH7.4)和1mm EDTA。
DNA提取自1869年弗里德里希·米舍(Friedrich Miescher)首次试图隔离它以来,它已经走了很长一段路,意外地发明了一种核酸隔离方法,后来其他人会完善。该过程涉及分解细胞膜和核信封以获得DNA,这对于PCR,DNA克隆,测序和电泳等各种分子生物学应用至关重要。取决于样本类型 - 需要植物,血液,细菌或其他 - 需要不同的提取方法,每种方法都有自己的手术,以确保DNA的所需纯度和数量。从苯酚 - 氯仿等醇到蛋白酶K,CTAB,自旋柱,磁珠等等,存在各种技术,每个技术都基于样品的特定要求选择。DNA提取的故事是连续的创新和精致之一,像Meselson和Stahl这样的先驱在1958年建立了全功能程序,而其他人则随着时间的推移贡献了他们的方法。从细胞中提取DNA的过程涉及三个主要步骤:细胞裂解,沉淀和溶解DNA。所使用的化学或组合的类型可能会根据目标和细胞类型而有所不同。对于柔软的细胞壁,如在结核分枝杆菌中发现的,用简单的裂解缓冲液加热是有效的。然而,较硬的细胞壁需要机械,化学和酶促方法来提取DNA。基于化学的DNA提取方法是基于溶液的,涉及各种有机和无机溶液。这些包括SDS,CTAB,苯酚,氯仿和硫氰酸鸟酯。所有程序的主要步骤是细胞裂解,降水和洗脱。基于溶液的(化学)DNA提取进一步分为基于有机溶剂的和基于无机溶剂的方法。有机溶剂(如苯酚和氯仿)以前已被使用,但由于危险而灰心。相反,采用了更安全的替代方案,例如Triton X100和EDTA。不同的化学物质有特定目的;蛋白酶K等酶分解蛋白质直接靶向氨基酸连接。DNA提取过程的有效性可能受细胞类型的影响以及某些化合物或化学物质组合的使用。在冷链中,尽管有一些缺点,但基于蛋白酶K的DNA分离方法还是有效的方法。此过程的一个问题是酶的稳定性降低,随着时间的流逝而降低。使用无机溶液(例如氯化钠和乙酸钾)与蛋白酶K结合使用的盐溶液。但是,提取的DNA的纯度可能是一个问题,因为尽管获得了足够的质量,但收益率可能不会令人满意。苯酚 - 氯仿 - 异氧化酒精法(PCI)是提取DNA的另一种流行技术。它使用液化缓冲液,苯酚和氯仿对蛋白质和破坏细胞,从而产生出色的产率和纯度。可以通过使用现成的DNA提取缓冲区来修改此方法,从而快速而简单。高质量的DNA产量和简单操作系统对于准确的DNA分析至关重要。相反,基于二氧化硅的DNA提取方法提供了一种独特的方法,依赖于二氧化硅和DNA相互作用的独特化学。带正电荷的二氧化硅颗粒在离心过程中与带负电荷的DNA结合,从而允许高质量的DNA产量和易于操作。由于其简单性和有效性,该市售技术已在诊断实验室中被广泛接受。为了验证提取的DNA,可以使用溴化乙锭或其他与DNA在UV光下反应的荧光染料在琼脂糖凝胶上电泳。通过计算260 nm和280 nm波长的吸光度来测量DNA的纯度。确定DNA纯度的最常见方法是A260/A280比率,对于优质DNA,应在1.7-2.0之间。较低的比率表明存在更多的污染物。荧光测量是确定DNA产量和浓度的另一种流行方法,它由于其广泛的可用性和比吸光度方法更高的灵敏度。也可以使用二苯胺(DPA)指示器确认DNA的存在,该指标涉及DNA化学水解。与分光光度计在600 nm处的吸光度强度也可以通过将DNA浓度与已知DNA浓度的标准曲线进行比较来确定DNA浓度。已开发和应用多种用于DNA提取的方法,包括用于传染病的护理核酸测试和人类DNA提取方法。方法的选择取决于DNA的特定应用和所需的质量。
1969 年,人们发现一种以前未知功能的牛红细胞蛋白具有催化超氧化物自由基歧化活性 (1-3)。这种酶,即超氧化物歧化酶,是一种金属蛋白,每分子含有 2 (1.8-2.0) 个铜原子和 2 (1.7-1.9) 个锌原子,分子量为 33,000,由两个大小相同的亚基组成 (4, 5)。从其他真核生物中纯化的铜锌歧化酶在分子量、亚基结构、氨基酸组成、铜锌含量以及对纯化所用的氯仿-乙醇混合物的稳定性方面与牛红细胞歧化酶相似 (2, 3)。细菌来源的酶代表一类独特的超氧化物歧化酶,其每个分子含有 1-2 个锰原子作为金属辅因子,对氯仿-乙醇处理不稳定,其氨基酸组成与铜锌歧化酶明显不同(2、3、6-8)。细菌酶的分子量约为 40,000,每个酶含有两个分子量为 20,000 的亚基。最近又分离出两种超氧化物歧化酶,其稳定性、纯化特性和氨基酸组成与细菌锰歧化酶相似。一种来自鸡肝线粒体(8)的超氧化物歧化酶每个分子含有 2.3 个锰原子,虽然它是四聚体,但其亚基分子量与细菌含锰酶相同。另一种是含有铁(每个分子约 1 个原子)而不是锰的,已从大肠杆菌中分离出来(9),是一种二聚体,其亚基大小相同(分子量 19,000)。已在各种需氧、厌氧和耐氧厌氧微生物中测量了超氧化物歧化酶活性水平(10)。从观察到的相关性来看,
NDI-C5 12.6/1.4 428 71 / 54 520 518 2.08 − 5.86 − 3.77 NDI-C6 18.0/1.3 425 55 520 518 2.08 − 5.86 − 3.78 NDI-C7 28.6/2.0 425 48 521 520 2.08 − 5.86 − 3.78 P(NDI2OD-T2) 157.5/2.0 i 448 312 701 705 1.55 − 6.22 − 4.69 a) 四氢呋喃 (THF) 作为洗脱液,40 °C。 b) 分解温度。 c) 熔化温度。 d) 氯仿溶液 e) 滴铸薄膜在玻璃基板上,在 50°C 下退火。f) 根据起始吸收 𝐸 𝑔 计算
噬菌体 DNA 分离试剂盒产品说明书 产品编号 46800 Norgen 的噬菌体 DNA 分离试剂盒提供了一种快速方法,可从在液体培养的细菌中繁殖的噬菌体中分离和纯化总 DNA。无需使用苯酚、氯仿或氯化铯即可分离 DNA。基于旋转柱的程序速度很快,可在 45 分钟内完成。该试剂盒可高效处理少量噬菌体上清液 (1 mL)。纯化的 DNA 具有最高的完整性,可用于多种下游应用,包括南方印迹、限制性片段长度多态性 (RFLP)、测序、克隆和实时 PCR。Norgen 的纯化技术 纯化基于旋转柱层析。无需使用苯酚、氯仿或氯化铯,即可优先从其他细胞成分(如蛋白质)中纯化噬菌体 DNA。该程序的起始材料是澄清的噬菌体上清液,该上清液已从液体培养物中的细菌碎片中分离出来。首先,使用提供的裂解缓冲液 B 通过热和化学裂解过程裂解噬菌体颗粒(请参阅第 4 页的流程图)。将异丙醇添加到裂解物中,然后将溶液加载到旋转柱上。Norgen 的旋转柱以取决于离子浓度的方式结合核酸,因此只有 DNA 会与柱结合,而大多数 RNA 和蛋白质会在流过中被去除。然后用提供的洗涤溶液 A 洗涤结合的 DNA 以去除任何残留杂质,并用洗脱缓冲液 B 洗脱纯化的总 DNA。纯化的总噬菌体 DNA 具有最高的完整性,可用于许多下游应用。试剂盒组件
噬菌体 DNA 分离试剂盒产品说明书 产品编号 46800 Norgen 的噬菌体 DNA 分离试剂盒提供了一种快速方法,可从在液体培养的细菌中繁殖的噬菌体中分离和纯化总 DNA。无需使用苯酚、氯仿或氯化铯即可分离 DNA。基于旋转柱的程序速度很快,可在 45 分钟内完成。该试剂盒可高效处理少量噬菌体上清液 (1 mL)。纯化的 DNA 具有最高的完整性,可用于多种下游应用,包括南方印迹、限制性片段长度多态性 (RFLP)、测序、克隆和实时 PCR。Norgen 的纯化技术 纯化基于旋转柱层析。无需使用苯酚、氯仿或氯化铯,即可优先从其他细胞成分(如蛋白质)中纯化噬菌体 DNA。该程序的起始材料是澄清的噬菌体上清液,该上清液已从液体培养物中的细菌碎片中分离出来。首先,使用提供的裂解缓冲液 B 通过热和化学裂解过程裂解噬菌体颗粒(请参阅第 4 页的流程图)。将异丙醇添加到裂解物中,然后将溶液加载到旋转柱上。Norgen 的旋转柱以取决于离子浓度的方式结合核酸,因此只有 DNA 会与柱结合,而大多数 RNA 和蛋白质会在流过中被去除。然后用提供的洗涤溶液 A 洗涤结合的 DNA 以去除任何残留杂质,并用洗脱缓冲液 B 洗脱纯化的总 DNA。纯化的总噬菌体 DNA 具有最高的完整性,可用于许多下游应用。试剂盒组件
在本节中,我们将回顾一些重要的研究,这些研究涉及有机半导体基薄膜晶体管的溶液加工性和电荷载流子迁移率,以及它们在有机气体传感器制造中的应用。首先,研究致力于探索有机半导体溶剂的可能性,从而调节半导体形貌和电荷传输。45–47 例如,Kim 等人研究了不同溶剂对 TIPS 并五苯薄膜形貌和结晶度的影响。48 沸点较高的溶剂(如氯苯和二甲苯)可形成结晶度较高的树枝状形貌,而沸点较低的溶剂(如氯仿)则可形成结晶度较低的非晶态薄膜。Choi 等人研究了溶剂沸点、晶粒尺寸和电荷传输之间的相关性。 29 使用高沸点氯苯旋涂 TIPS 并五苯可产生晶粒尺寸大、结晶度高的晶体,其迁移率比氯仿等低沸点溶剂高 5 个数量级。Hwang 等人报道了包括氯苯和四氢化萘在内的不同溶剂对 TIPS 并五苯/聚合物共混物的垂直相分离和组成结构的影响。49 使用四氢化萘溶剂时,观察到明显的相分离和增强的结晶,这归因于更高的迁移率值。Ozorio 等人发现了不同溶剂选择如何影响 TIPS 并五苯/聚(3-己基噻吩)(P3HT)共混物中的垂直相分离和电荷传输。溶剂三氯苯导致 TIPS 并五苯和 P3HT 之间出现适度的垂直相分离,并产生优化的 TIPS 并五苯薄膜形貌和增强的 P3HT 有序性,从而产生的输出电流是
在二元聚合物系统中结合疏水聚合物,例如多丙酮酸酮(PCL)以及氢氨聚合物聚合物氧化物(PEO),可以通过允许出色的治疗性释放,抗微生物的可能性来实现生物医学工程中的一系列新型应用。在这项工作中,PCL和PEO均以六个不同的比例以15 W/V%溶解在氯仿中,以制备二元聚合物溶液。测量了奇异和二元聚合物溶液的流变特性,并使用加压回旋旋转纤维。使用扫描电子显微镜(SEM)研究了制备材料的纤维形态。通过将样品浸入去离子水中,使用光学显微镜开发并分析具有不同肿胀行为的二元聚合物纤维。结果用于鉴定氯仿中最佳的PCL:PEO二进制混合物。用布洛芬(IBP)的奇异/二元聚合物复合材料的化学组成通过傅立叶转换红外光谱(FTIR)进行了表征,并使用差分扫描量热法(DSC)检查了热分析。对PEO - IBP的体外研究在40 s中表现出90%的即时释放率,而PCL - IBP和PCL:PEO - PEO - IBP揭示了持续的释放,分别在72小时内持续释放87 - 96%。 结果用于讨论在生物医学应用中二元聚合物系统的潜在用途。对PEO - IBP的体外研究在40 s中表现出90%的即时释放率,而PCL - IBP和PCL:PEO - PEO - IBP揭示了持续的释放,分别在72小时内持续释放87 - 96%。结果用于讨论在生物医学应用中二元聚合物系统的潜在用途。
图1:SQ II D FS的制造。GMO/氯仿溶液沉积在刚性底物的顶部,然后使用自旋夹具将其放置在旋转下。这导致虹彩膜可见,肉眼可见,然后可以水合以使转基因生物自我组装到预期的立方结构中。在室温,大气压和水过量时,所得的脂质膜的特征是在3D空间中重复多个Q II D(PN-3M空间对称性)单位细胞,因此产生了所谓的Q II D相。每个单位电池的表面呈现一个覆盖整个IPM的脂质双层。