研究结构缺陷及其对光学材料光学性质的影响是至关重要的,因为在制备用于显示应用的材料时会涉及不同的方法。镧系离子掺杂是一种简单的结构探测策略,它有助于识别结构缺陷。使用 Pechini (C 2 SP) 和水热法 (C 2 SH) 制备纯和铽 (Tb 3 +) 掺杂的 Ca 2 SiO 4 (C 2 S) 粒子。从 SEM 图像中可以看出,Tb 3 + 掺杂的 C 2 SP 粒子比 C 2 SH 粒子更高度聚集。TEM 研究证实,在 180 和 200 C 的高水热温度下制备的 C 2 SH (C 2 S:180H 和 C 2 S:200H) 的粒度减小。 Tb 3 + 掺杂的 C 2 S:180H 和 C 2 S:200H 发生荧光发射猝灭。与 Tb 3 + 掺杂的 C 2 SP、C 2 S:180H 和 C 2 S:200H 相比,在 140 C 下制备的 Tb 3 + 掺杂的 C 2 SH 的发射强度较高。在 X 射线光电子能谱 (XPS) 价带谱中,实验评估了与纯 C 2 SP 和 C 2 S:180H 四面体硅酸盐的上能级价带谱相关的 O2p 轨道的变化。由于硅酸盐单元的扭曲导致对称性降低,从而猝灭了发射,这已由 XPS 价带谱和 Tb 3 + 发射线证实。这项研究表明,与水热法相比,Pechini 法更适合制备 Tb 3 + 掺杂的 C 2 S 荧光粉,特别是在高温下用于固态显示器和闪烁体应用。© 2020 作者。由 Elsevier BV 代表河内越南国立大学提供出版服务。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
钛基磷酸钾(KTIOPO 4),通常称为KTP,以其在量子和光学技术中的应用而闻名。这项研究的重点是采用水热和共沉淀方法的KTP纳米晶体的合成,采用草酸作为封盖剂。X射线粉末衍射(XRD)分析证实了正骨KTP晶体的成功合成。傅立叶变换红外(FT-IR)光谱进一步验证了KTP内的键结构,其特征带对应于其在所有光谱中始终观察到的晶体结构。定量分析表明,水热方法产生的KTP纳米颗粒的平均晶粒大小约为35 nm,而共沉淀方法产生的较小的纳米颗粒,平均晶粒尺寸为22 nm。值得注意的是,在水热法中将草酸作为封盖剂的引入将晶粒尺寸降低15%至约30 nm,而在共沉淀法中,它意外地将晶粒尺寸增加了20%,导致纳米颗粒的平均晶粒尺寸为26 nm。此外,与通过热液方法合成的样品(约0.5%)相比,在共同沉淀的样品中发现晶格内的应变更高(约0.8%)。这些发现强调了合成方法和封盖剂对KTP纳米颗粒的大小,形态和结构完整性的重要影响。这种见解对于优化针对光学设备,光子学和量子技术的各种应用量身定制的KTP纳米颗粒的合成至关重要。水热方法显示出在产生较大纳米颗粒的功效,而草酸作为涂料剂的存在在控制晶粒尺寸和增强结构稳定性方面起着关键作用。
为了应对不断增长的能源需求、日益加剧的气候变化问题以及日益严重的环境恶化,可再生能源的引入已在各个行业和地区获得关注。与此同时,科学家和工程师已经认识到热回收系统在减少能源消耗方面的潜力,从而进一步研究其实际应用。本研究引入了一种创新设计,将涡流发生器集成到同心管热交换器中,用于从为 48 间住宿提供服务的多排水水系统中回收热量。通过评估该设计与各种可再生能源结合使用时的经济和环境影响来评估其可持续性。具体而言,目标是量化在拥有 48 间住宿的建筑的多排水应用中实施此设计所产生的成本和环境节约。数值研究阐明了流速变化对传热、总传热和热增强因子的影响。分析了四种可再生能源输入 - 太阳能、风能、生物质能和水力发电 - 以及一个存储系统(抽水蓄能)。研究表明,设计实施可使冷水温度升高 3.5 至 7.5 ◦ C。此外,太阳能、风能、生物质能、水力发电和抽水蓄能的每日环境节约估计分别为 0.783 欧元、0.339 欧元、0.141 欧元、0.027 欧元和 1.356 欧元。相反,每种相应能源的每日经济节约计算为 3.62 欧元、2.49 欧元、5.05 欧元、3.62 欧元和 6.70 欧元。这项研究强调了所提出的设计在通过环境保护和经济效率促进可持续发展方面的可行性。
氧化铁纳米颗粒是非常有用的材料,因为它们具有珍贵和潜在的应用,丰度,较低的加工成本,稳定性,环境友好的功能和生物相容性[1]。近年来,α-FE 2 O 3已广泛应用于催化剂,气体传感器,色素,光学和电磁,药物递送等,因为它们的增强特性归因于其各种结构[2]。氧化铁纳米颗粒已经通过各种方法合成,但是开发易于环保和环保的合成方法至关重要[3]。赤铁矿(α-FE 2 O 3)的带隙为1.9-2.2 eV,可以充当非常好的半导体催化剂[4]。在合成过程中,材料的带隙的变化可能有助于进一步改善其生物医学应用和光学特性[5]。纳米化材料的最新发展显示出多种用途,例如可充电电池,超级电容器,磁性材料,照片催化降解和电极材料[6]。铁的氧化物以三种常见形式出现,即赤铁矿,磁铁矿和磁铁矿,其中赤铁矿(α-fe 2 O 3)是
这项研究采用简单的热液(HT)方法来合成五氧化钒(V 2 O 5)纳米材料。V 2 O 5的固有局限性,包括低量子效率和光敏度不足,限制了其增强光催化活性的潜力。该研究研究了通过退火通过退火研究甲基橙(MO)和刚果红(CR)染料的光降解。X射线衍射(XRD)和拉曼光谱学证实了V 2 O 5的组成,而SEM用于观察封装的纳米颗粒的形态。使用紫外线(UV)光谱法估计V 2 O 5的带隙在2.51和2.73 eV之间。此外,分析了亚甲基蓝(MB)染料的光降解,钙化的V2O5在90分钟内实现了MB的76%降解效率。对于CR和MO,在20 mg/L染料浓度下,降解率在200分钟内达到97.91%和86%。MB降解的反应速率常数确定为8.19 x10⁻⁵s⁻。总体而言,HT合成的V 2 O 5由于其可见光吸光度提高而表现出增强的光催化活性,从而促进了偶氮染料的更有效的光降解。
在全球不同的海洋和陆地环境中,已经报道了抽象的Zetaproteobacteria。它们在富含海洋铁的微生物垫中起着至关重要的作用,作为其自养主要生产者之一,氧化Fe(II),并产生具有不同形态的Fe-氧还氧化物。在这里,我们通过使用Zetaproteobacte Rial操作分类学单元(Zetaotu)分类,研究和比较了来自幸运罢工水热场六个不同地点的富含铁的微生物垫的Zetaproteobacterial社区。我们首次报告了这些富含铁的微生物垫的Zetaproteobacterial核心微生物组,该垫子由四个是国际化的Zetaotus组成,对于垫子的发展至关重要。对位点之间不同Zetaotus的存在和丰度的研究揭示了两个簇,这与它们开发的底层的岩性和渗透性有关。簇1的zetaproteobacterial群落是渗透不良的底层的特征,几乎没有弥漫性排气的证据,而群集2的斑点底层则在水热板或沉积物上形成,允许扩散水热流体的渗透和流出。此外,还确定了两个Newzetaotus 1和2,这可能分别是人类铁的特征和未经证实的玄武岩。我们还报告了某些Zetaotus的丰度与氧化铁形态的含量之间的显着相关性,这表明它们的形成可能是分类学和/或环境驱动的。我们确定了我们命名为“珊瑚”的Fe(III) - 氧氧化物的新形态。总体而言,我们的工作通过提供来自大西洋的其他数据来帮助对该细菌类别的生物地理学的知识,这是Zetaproteobacterial多样性的较少研究的海洋。
1莱布尼兹农业工程与生物经济研究所(ATB),Max-eyth-Allee 100,14469 Potsdam,德国2废物管理与循环经济研究所,环境科学学院,TechniSchethecteriTätector,Dresten,Pratzschschschschwitzh的159.17991.07991.07991.07991,, 环境工程与建筑(DICAAR),Cagliari大学,Marengo,Marengo,09123 Cagliari,意大利; gcappai@unica.it 4意大利国家研究委员会 - 环境地质与地球工程(CNR-IGAG),通过Marengo 2,09123 Cagliari,意大利5号Red River Research Station,Louisiana State University University University University University Cermutultural Centornal Center,Bossier shoutjx@gmail.com(J.-W.C.); cjeong@agcenter.lsu.edu(c.j.) 6苏黎世应用科学大学(Zhaw)的自然资源科学研究所,瑞士CH-8820Wädenswil; beatrice.kulli@zhaw.CH 7,特伦托大学民用,环境和机械工程系,通过Mesiano 77,38123意大利特伦托; filippo.marchelli@unitn.it 8 USDA-ARS沿海平原土壤,水与植物研究中心,美国佛罗伦萨西部卢卡斯街2611号,美国南卡罗来纳州29501,美国; kyoung.ro@usda.gov 9 Departamento defísicaaplicada,Escuela de Ingenierí,avd extremadura大学。 de elvas s/n,06006 Badajoz,西班牙 *通信:hdang@atb-potsdam.de(C.H.D. ); sroman@unex.es(s.r。)环境工程与建筑(DICAAR),Cagliari大学,Marengo,Marengo,09123 Cagliari,意大利; gcappai@unica.it 4意大利国家研究委员会 - 环境地质与地球工程(CNR-IGAG),通过Marengo 2,09123 Cagliari,意大利5号Red River Research Station,Louisiana State University University University University University Cermutultural Centornal Center,Bossier shoutjx@gmail.com(J.-W.C.); cjeong@agcenter.lsu.edu(c.j.)6苏黎世应用科学大学(Zhaw)的自然资源科学研究所,瑞士CH-8820Wädenswil; beatrice.kulli@zhaw.CH 7,特伦托大学民用,环境和机械工程系,通过Mesiano 77,38123意大利特伦托; filippo.marchelli@unitn.it 8 USDA-ARS沿海平原土壤,水与植物研究中心,美国佛罗伦萨西部卢卡斯街2611号,美国南卡罗来纳州29501,美国; kyoung.ro@usda.gov 9 Departamento defísicaaplicada,Escuela de Ingenierí,avd extremadura大学。 de elvas s/n,06006 Badajoz,西班牙 *通信:hdang@atb-potsdam.de(C.H.D. ); sroman@unex.es(s.r。)6苏黎世应用科学大学(Zhaw)的自然资源科学研究所,瑞士CH-8820Wädenswil; beatrice.kulli@zhaw.CH 7,特伦托大学民用,环境和机械工程系,通过Mesiano 77,38123意大利特伦托; filippo.marchelli@unitn.it 8 USDA-ARS沿海平原土壤,水与植物研究中心,美国佛罗伦萨西部卢卡斯街2611号,美国南卡罗来纳州29501,美国; kyoung.ro@usda.gov 9 Departamento defísicaaplicada,Escuela de Ingenierí,avd extremadura大学。de elvas s/n,06006 Badajoz,西班牙 *通信:hdang@atb-potsdam.de(C.H.D.); sroman@unex.es(s.r。)
二氧化钛(TIO 2)最近引起了极大的关注,这主要是由于骨科和纳米材料科学的交集。这种感兴趣的激增可以归因于良好的理解,即Ti金属在暴露于大气条件时会经历表面氧化,最终导致外部面上强大的天然Tio 2层的形成。诸如阳极氧化等技术进一步增强了这一过程,从而导致了在生物学上兼容和成骨的钝化表面涂层的发展。纳米材料化学的进步在该结构域中至关重要,从而使TIO 2结构的受控组装(包括纳米纤维和纳米管)具有受控组装。此外,已经确定了特定的合成方法,可以产生具有分层结构的钛酸簇,这有利于磷灰石形成 - 天然骨组织的无机复合物。也值得注意的是,二氧化钛具有反应并转化为钛纳米管或纳米线的能力。这种特征已被证明是有益的,因为它已被证明可以促进与体液的离子交往相互作用,从而支持骨组织生长。具体来说,当将钛材料放入模拟的体液中时,离子交换开始并鼓励羟基磷灰石的产生,羟基磷灰石是天然骨的基本成分。纳米材料化学丰富了这一研究领域,许多实验室已经研究了结构控制TIO 2的形态,例如纳米纤维和纳米管[11,12]。这种产生的离子层结构作为阳离子储层起着至关重要的作用。已经确定了合成方法中的进步来产生钛酸盐材料,这些材料由它们的粘土状晶格(由边缘共享TIO TIO 6八面体组成)与阳离子实体散布在一起[13]。这种分层结构特别有利于模拟体液(SBF)中的磷灰石形成。更具体地说,涉及粉状TIO 2矿物质的热液反应,例如假酶和氧化钠或氢氧化钾溶液,会根据反应条件而产生Na-或K- titanate纳米管或纳米线。它有助于体液中发现的阳离子的离子交换,因此自主维持阳离子平衡原位,这对于骨组织生长至关重要。在SBF环境中,Na/k- titanate和钙(Ca 2+)之间的浓度梯度促使具有Ca 2+的单价Na +或K +离子的离子交换。这为随后的相互作用设定了阶段:磷酸盐阴离子的协调{即(PO 3)3-,(HPO 3)2-和(H 2 PO 3) - 从体液与泰坦酸盐结合的Ca 2+的体液中的(H 2 PO 3) - }。这种相互作用的顶点是形成水合磷酸钙或羟基磷灰石的形成,羟基磷灰石是天然骨的必不可少的基础[13]。
本报告是由美国政府某个机构资助的工作报告。美国政府及其任何机构、巴特尔纪念研究所或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,或保证其使用不会侵犯私有权利。本文中对任何特定商业产品、流程或服务的商品名、商标、制造商或其他方面的引用并不一定构成或暗示美国政府或其任何机构或巴特尔纪念研究所对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
1 意大利墨西拿,Contrada Porticatello, 29, 98167,综合海洋生态学系,Anton Dohrn 动物站,西西里海洋中心; erika.arcadi@szn.it (EA); rosario.calogero@szn.it (RC); franco.andaloro@szn.it (FA) 2 意大利法诺海洋中心、Stazione Zoologica Anton Dohrn、Viale Adriatico 1-N、61032 法诺、海洋生物技术部; emanuela.buschi@szn.it 3 海洋生物资源研究基础设施部,Stazione Zoologica Anton Dohrn,Fano Marine Centre,Viale Adriatico 1-N,61032 Fano,意大利 4 海洋生物资源研究基础设施部,Stazione Zoologica Anton Dohrn,Villa Comunale,80121 Naples,意大利; pasquale.deluca@szn.it 5 国家海洋和实验地球物理研究所 - OGS Borgo Grotta Gigante 42/C, 34010 Sgonico,意大利; vesposito@inogs.it 6 海洋生物生物学和进化部,Stazione Zoologica Anton Dohrn,西西里海洋中心,Via dei Mille 46, 98057 Milazzo,意大利; teresa.romeo@szn.it 7 国家环境保护与研究研究所,Via dei Mille 46, 98057 Milazzo,意大利 8 马尔凯理工大学生命与环境科学系,Via Brecce Bianche, 60131 Ancona,意大利; r.danovaro@univpm.it 9 国家生物多样性未来中心(NBFC),90133 巴勒莫,意大利 * 通讯地址:eugenio.rastelli@szn.it (ER); michael.tangherlini@szn.it (MT) † 这些作者对这项工作做出了同等贡献。