高强度铝合金,包括 2xxx、6xxx 和 7xxx 合金,在高温下强度较低,这是因为热暴露后沉淀物会粗化[7 和 9]。最近的研究报告称,由于 α-Al(MnFe)Si 弥散体的析出,3xxx 合金在室温和高温下均具有优异的力学性能[10 和 13]。α-Al(MnFe)Si 弥散体与基体部分共格,具有立方晶体结构[10,14]。有趣的是,α-Al(MnFe)Si 弥散体在 300℃ 时具有热稳定性,这提高了高温强度和抗蠕变性[12,13]。曾尝试通过添加合金元素和/或各种热处理来优化α-Al(MnFe)Si弥散体的特性,以期改善3xxx合金的高温力学性能[11、13、15和19]。刘和陈[12]报道,在375℃下加热48小时的一步法热处理促使大量α-Al(MnFe)Si弥散体析出,从而在300℃下实现3004合金的峰值弥散强化。后来,发现与在375℃下加热48小时的一步法热处理相比,在250℃下加热24小时和在375℃下加热48小时的两步法热处理可显著改善弥散体的特性以及300℃下的屈服强度和抗蠕变性[17]。李等人。 [13]研究了添加不同量的Si和Mg对3xxx合金组织和高温性能的影响,发现当Si含量为0.25wt.%、Mg含量为1.0wt.%时,α-Al(MnFe)Si弥散相的高温强化效果最好。刘等[16]研究发现,在Al-Mn-Mg 3004合金中添加0.3wt.%Mo可细化弥散相,并提高其在350℃以下的热稳定性。由于Fe、Si和Mn等合金元素在凝固过程中发生偏析,在沉淀热处理过程中,枝晶间区域总会形成无弥散相区(DFZ),从而降低弥散相的体积分数,降低合金的高温性能[11e13]。因此,在采用弥散强化时,必须尽量减少 DFZ。添加具有负偏析(ko > 1)的元素是减少 DFZ 数量的有效方法。据报道,Mo 可以最大限度地减少不同 Al 合金中 DFZ 的形成 [16,20,21],从而使弥散体的体积分数较大且分布均匀,最终获得更优的高温性能。尽管之前的研究报告显示弥散体强化可以使 Ale Mne Mg 3xxx 合金的高温性能得到显著改善,但大多数研究都局限于铸锭。事实上,工业工程零件通常需要材料经历大的塑性变形才能满足特殊的形状和性能要求。此外,热轧或挤压也能消除铸造缺陷,如夹渣、孔隙等,进一步改善材料性能[22e25]。张等[26]研究发现,室温预轧显著促进了纳米弥散相的形核,增加了Al-Mn-Si合金中弥散相的数量密度。但室温变形会增加开裂的风险,从而增加制造难度[27]。因此,有必要研究热变形工艺对弥散相组织及其相关力学性能的影响。
在聚合物中,在单个水平和链之间的链条折叠和聚集之间的竞争可以确定此类材料的机械,热和导电性能。了解折叠和聚集的相互作用为开发和发现具有量身定制性能和功能的聚合物材料提供了重要的机会。对于常规共价聚合物的非共价对应物也是如此,即,超分子聚合物(SPS)。sps有望用作新型刺激响应性聚合物材料的实际应用。大多数SPS具有单调的一维线性结构,该结构倾向于引起链链聚集,但是很少有SPS的报道可以通过主链折叠形成各种高阶结构。既展示了内部折叠和链链聚合的SP的开发,将为创建新型SP材料提供新的指南,其特性可以由高阶结构控制。最近发表在2024年7月25日在美国化学学会杂志上发表的一项研究报告了一种新的折叠SP,该SP自发进行链链聚集并转化为结晶骨料。借助原子力显微镜(AFM),研究小组证明了展开与聚集之间的关系。这项研究是由Chiba University的Shiki Yagai教授领导的,他是Chiba University科学与工程研究生院的博士课程学生Kenta Tamaki,是第一作者。 “最初,我们发现了一种单体结构,该结构以螺旋形形状聚合。这次,我们部分改变了驱动单体聚合以研究单体聚合物关系的单位结构。令我们惊讶的是,我们观察到了一种现象,螺旋自发地展开,而不同的链条捆在一起。然后,我们合并了一个可相关的分子,以便通过光线通过“任意时机”出现这种“自发”现象,这为我们的研究提供了背景,” Yagai教授说,这项研究背后的灵感。为设计新系统,该团队选择了可扭曲的二苯基和光反应偶氮苯单元作为核心,将其自组装到所需的SPS中。最初以折叠状态形成的SP慢慢地以内部分子顺序进行重排超过半天,并汇总到结晶状态。将偶氮苯单元纳入SPS导致了光诱导的展开,这通过松动折叠环之间的内部稳定来显着加速了这一过程。研究人员观察到,当将折叠的SP溶液保持在20 O C下几天时,聚合物会自发进行结构过渡并沉淀。使用AFM可视化沉淀物时,他们观察到了独特的中间状态,在通往统一的直纤维结构的途中,似乎是弯曲链的结合。这个有趣的图像使研究人员想起了蛋白质折叠不折叠的生物系统中经常观察到的链链聚集,从而导致淀粉样蛋白纤维形成。此外,该团队揭示了这种结构转型背后的原因。这包括由于双苯基单元的构象变化而导致的分子内顺序
针对2023年8月25日,雅加达的60,000吨镍,雅加达 - PT谷印尼TBK(“ Pt Vale”或“ Company”,IDX Ticker:INCO)与Zhejiang Huayou Co. ltd(huialou)签署了确定的合作协议在混合氢氧化物沉淀物(MHP)产品中,浸出(HPAL)设施的目标是60,000吨镍和约5,000吨钴,可进一步加工到电动汽车电池中。该项目将从Sorowako街区处理Limonite镍矿石,HPAL设施将位于South Sulawesi的East Luwu的Malili。该项目以及Pomalaa HPAL设施和Morowali项目的最新进展,是实现我们增长野心和实现投资承诺的一部分。PT Vale Indonesia首席执行官 Febriany Eddy说:“这次合作与印度尼西亚建立国内EV生态系统的愿景一致,并使PT Vale成为解决世界上脱碳挑战的重要贡献者,该投资将带来本地经济利益,并确保在印度尼西亚的Indonesia's Nickel Resources。 PT Vale和合作伙伴对低碳的承诺以及PT Vale表明可持续的采矿实践将使这成为世界一流的项目。” PT Vale总裁专员Deshnee Naidoo说:“该协议是PT Vale的战略里程碑,因为我们在印度尼西亚提高了86亿美元的增长渠道。” HPAL项目将在获得所有必需许可后立即开始施工。Febriany Eddy说:“这次合作与印度尼西亚建立国内EV生态系统的愿景一致,并使PT Vale成为解决世界上脱碳挑战的重要贡献者,该投资将带来本地经济利益,并确保在印度尼西亚的Indonesia's Nickel Resources。PT Vale和合作伙伴对低碳的承诺以及PT Vale表明可持续的采矿实践将使这成为世界一流的项目。” PT Vale总裁专员Deshnee Naidoo说:“该协议是PT Vale的战略里程碑,因为我们在印度尼西亚提高了86亿美元的增长渠道。”HPAL项目将在获得所有必需许可后立即开始施工。Desnee补充说:“在印度尼西亚进行了半个多世纪的运营,PT Vale独特地放置并致力于支持和加速该国的野心,以便在下游加工上进行更大的镍,并建立了蓬勃发展的家务电动汽车供应链,从矿产采矿到电池和车辆生产。” Huayou主席Chen Xuehua先生说:“建立双赢未来锂行业的合作是Huayou致力于实践的发展概念。这种合作是Huayou Cobalt世界领先,绿色和低碳HPAL技术,印度尼西亚富镍资源优势和PT Vale的可持续采矿实践的另一个完美结合。通过合作,Huayou将通过严格的ESG实践实现低碳,绿色和可持续的资源开发,并为新能源行业的发展增强力量,并为印度尼西亚的经济和社会发展以及全球电动汽车行业及其供应链促进经济和社会发展。”
雅加达 - 2023年3月30日 - PT Vale Indonesia TBK和中国的Zhejiang Huayou Cobalt Co.今天宣布与全球汽车制造商Ford Motor Co.达成协议,创建了三方合作,以提高印尼更具可持续性的Nickel Production,并帮助使电动汽车电池更具负担。所有三家公司都通过今天在印度尼西亚总统乔科·维多多(Joko Widodo)的仪式上庆祝的一项确定的协议,在Pomalaa Block高压酸浸出(HPAL)项目中进行股票投资。Pomalaa Block HPAL项目将处理由印度尼西亚PT Vale提供的矿石从其Pomalaa Block矿山提供的矿石,以生产MHP。该HPAL工厂将在印度尼西亚西南部苏拉威西州科拉卡的Pomalaa街区的PT Kolaka Nickel Indonesia下运营。获得监管批准的前提,该项目每年可以以混合氢氧化物沉淀物(MHP)的形式生产多达120千万元的镍,这是一种低成本的镍产品,用于具有富含镍阴极的EV电池。Pomalaa Block HPAL项目的早期现场准备工作已经开始,预计将于今年开始,商业运营将于2026年开始。该协作将为汽车行业转向电动汽车提供必不可少的材料,增强印度尼西亚的电动汽车制造业,并支持福特在2026年底之前提供200万EV生产率的计划,并随着时间的推移进一步扩展。“我们将环境,社会和治理标准嵌入到我们所做的一切中,结果是与全球汽车制造商福特和领先的全球矿产处理器Huayou共同投资该项目的独特合作。三向镍加工项目 - 以及与福特和Huayou的单独开发供应协议一起,用于制造锂离子电池至关重要的前体阴极的活动材料 - 共同将与福特的其他来源的镍一起结合,并在2026年底之前为其EV生产提供了重大贡献。“该框架为福特直接控制提供了我们所需的镍(以行业最低的成本方式之一),并使我们能够确保镍固定在我们公司的可持续性目标上,并将其缩放为我们的ESG标准。“以这种方式工作使福特处于有助于使电动汽车更容易获得数百万美元的位置,并以帮助更好地保护人民和地球的方式进行。” PT Vale Indonesia首席执行官Febriany Eddy说:“该协议表明,这不仅与我们的工作有关,而且是我们的工作方式。”这一全球合作与印度尼西亚建立国内ev生态系统的愿景一致,并使PT Vale成为应对世界脱碳挑战的重要贡献者,这项投资将产生地方经济利益并确保对印度尼西亚镍资源的最佳利用。”该协议是去年11月的PT Vale印度尼西亚Pomalaa街区的延续这个街区是一个国家战略项目,投资于印尼卢比亚67.5万亿,预计将产生12,000个建筑工作。
非周期性就是您所需要的:用于高性能复合材料的非周期单瓦片 Jiyoung Jung 1,2、Ailin Chen 1,2 和 Grace X. Gu 1,* 1 加利福尼亚大学机械工程系,美国 CA 伯克利 94720 2 这些作者对这项工作做出了同等贡献 * 通讯作者:ggu@berkeley.edu 摘要 本研究通过采用非周期单瓦片(覆盖非平移对称表面的形状)引入了一种新颖的复合材料设计方法。采用计算和实验相结合的方法,我们研究了用这些单瓦片制作的复合材料的断裂行为,并将它们的性能与传统的蜂窝状图案进行了比较。值得注意的是,与蜂窝设计相比,我们基于非周期单瓦片的复合材料表现出了优异的刚度、强度和韧性。这项研究表明,利用非周期结构固有的无序性可以迎来新一代坚固而有弹性的材料。 1. 简介 复合材料因其可定制的机械性能而备受赞誉,是航空航天和生物医学领域不可或缺的轻质结构部件。1-5 这些材料的强度在于它们的复合性质——结合不同基础材料的特性可以创建具有多种所需特性和谐平衡的复合材料。这一概念在生物材料 6-11 中得到了很好的体现,例如珍珠层和木材,尽管它们由相对较弱的成分组成,但其机械性能通常优于工程材料。传统工程复合材料通常以重复的单元为特征,这一特征简化了设计和制造过程。然而,这种有序结构在临界载荷下会导致灾难性的故障。同时,生物材料通常呈现无序结构,其中单元在空间上有所不同。12 这种无序在改善生物材料机械性能方面发挥的作用程度仍然是正在进行的研究课题。具有不规则或无序微观结构的材料的固有优势最近引起了科学界的兴趣。 13-15 这些结构具有异质微结构的特征,可以为应力波传播提供强化路径,从而提高重载下的弹性。16-19 新兴研究表明,通过放大这种不规则性,可以提高特定细胞框架的缺陷容忍度。20 此外,多晶结构的微观复杂性,包括晶界、沉淀物和相,被视为具有增强韧性的工程材料的潜在模板。21,22 目前创建这些异质结构的方法涉及在规则晶格结构内随机移动节点、构建材料泡沫等技术,或堆叠具有不同微观结构的材料 17,23,24 然而,这些方法给设计和制造带来了一层复杂性,尤其是由于不同取向的晶胞组装不完美而带来的挑战。为了应对这些挑战,我们的研究提出了将非周期单瓦片集成到复合材料设计中。正如最近文献中发现的那样,非周期单瓦片已被证明可以完全覆盖具有内在非周期性的表面。25 这使它们成为创建无序材料的理想选择。在复合材料设计中使用非周期单瓦片将有助于实现可调特性,同时保持出色的界面结合。在这项工作中,我们探索了一个全新的架构系列