在这项工作中,我们对我们称为泊松层的印度bu效过程进行了全面的贝叶斯后验分析,该过程旨在用于复杂的随机稀疏计数物种采样模型,该模型允许跨组内和内部共享信息。此分析涵盖了可能有限数量的物种和未知参数,在贝叶斯机器学习环境中,我们能够随着更多信息的采样而学习。为了实现我们的结合结果,我们采用了一系列从贝叶斯潜在特征模型,随机占用模型和偏移理论中汲取的方法。尽管有这种复杂性,但我们的目标是使从业人员(包括那些可能不熟悉这些领域的人)可以访问我们的发现。为了促进理解,我们采用了一种伪式风格,强调清晰度和实用性。我们的目标是用一种与微生物组和生态学专家产生共鸣的语言来表达自己的发现,以解决建模能力的差距,同时承认我们不是这些领域中的专家。这种方法鼓励将我们的模型用作域专家采用的更复杂框架的基本组成部分,从而体现了Dirichlet过程中开创性工作的精神。最终,我们对后验分析不仅会产生可进行的计算程序,而且还可以实现实际的统计实施,并在微生物组分析中为相关数量提供了明确的映射。
本研究探讨了在降雨模型中使用分数泊松和分数伽马模型的好处,突出了它们在处理零膨胀数据,减少过度分散并提供更大的灵活性和准确性和准确性方面的优势。这项研究的第二部分研究了海洋生态系统与全球气候变化之间的动态相互作用。它专注于浮游植物在氧气产生中的作用以及变暖水对这种微妙平衡的影响。通过采用整合微分方程和布朗运动的数学模型,该研究提供了一个全面的框架,以了解不同的氧气产量如何影响海洋生态系统的可持续性。最后,该研究将小部分的布朗运动纳入建模浮游生物 - 氧气动力学,以解决传统布朗运动的局限性。此方法捕获远程
Apr 1, 2024 — 新松机器人自动化股份有限公司(新松本部). SIASUN Robot & Automation Co., LTD.(SIASUN HQ). 沉阳新松半导体设备有限公司. Shenyang SIASUN Microelectronics Equipment ...
有效的计算或Levenshtein distance是一种用于评估序列相似性的普遍指标,随着DNA存储和其他生物学应用的出现,引起了显着的关注。序列嵌入将Levenshtein的距离映射到嵌入向量之间的调用距离,已成为一种有前途的解决方案。在本文中,提出了一种基于泊松再生的新型基于神经网络的序列嵌入技术。我们首先提供了对嵌入维度对模型性能的影响的理论分析,并提出了选择适当的嵌入性识别的标准。在此嵌入维度下,通过假设托管式分离后的固定长度序列之间的levenshtein距离来引入泊松式,这自然与左环特链距离的定义相一致。此外,从嵌入距离的分布的角度来看,泊松回归大约是卡方分布的负面对数可能性,并在消除偏度方面提供了进步。通过对实际DNA存储数据的全面实验,我们证明了与最新方法相比,采用方法的出色性能。
摘要。在本文中,我们通过在一组局部相似性措施上最小化促进平滑度的函数,以比较给定图像的平均值以及在大量子框上比较一些候选图像,从而确定了给定的嘈杂图像。相关的凸优化问题具有大量的约束,这些约束是由kullback-leibler差异引起的扩展实现功能引起的。另外,这些非线性约束可以被重新重新构成AFFINE,这使该模型看起来更加易于处理。用于对模型的两种公式的数值处理(即原始限制和具有限制的原始公式),我们提出了一种相当普遍的增强拉格朗日方法,能够处理大量约束。提供了一种独立的,无衍生的全球融合理论,可以扩展到其他问题类别。对于在我们建议的图像denoising模型的设置中解决所得子问题的解决方案,我们使用合适的随机梯度方法。为了比较配方和相关的增强拉格朗日方法,提出了几个数值实验的结果。
我们引入神经网络作为人工智能模型之一。神经网络是生物神经细胞回路中进行的信息处理的模型。神经细胞由称为细胞体的主体、从细胞体延伸出来的树突和连接到其他细胞的轴突组成。轴突的末端附着在其他神经细胞的树突上,轴突与其他神经细胞的连接处称为突触。树突接收来自其他细胞和感觉细胞的输入信号,信号在细胞体内进行处理,并通过轴突和突触将输出信号发送给其他神经元(图2(a))。 据称大脑中的神经元数量约为 10^10 到 10^11。通过结合这些细胞,每个神经元以并行和分布式的方式处理信息,从而产生非常复杂和先进的处理。一个细胞的输出通过突触传递到其他细胞,通过轴突可以分支成数十到数百个神经元。单个细胞具有的突触连接数量从数百个到数万个不等。所有这些突触连接都有助于神经元之间的信号传输。 当一个信号从另一个神经细胞到达一个神经细胞时,膜电位会因信号而发生变化,当信号超过一定的阈值时,电位就变为正值,神经细胞就会兴奋。然后它向其他神经元发送信号。无论输入值如何,该图的形状几乎都是相同的波形,一旦超过阈值,就会产生恒定形状和幅度的电脉冲。因此人们认为,神经网络中承载信息的不是电脉冲的波形,而是电脉冲的频率(图2(b))。 细胞体的阈值函数,当输入高于阈值时,发出电脉冲,当输入低于阈值时,不发出电脉冲,具有从输入到输出的非线性转换效果。此外,还有兴奋性突触,它会释放使输入神经细胞更容易兴奋的递质,还有抑制性突触,它会使输入神经细胞更不容易兴奋。接收输入神经元可以被认为是接收来自每个输出神经元的输入的总和。 神经网络的数学模型源于对神经元的观察。 1943年,McCullough和Pitts提出了正式的神经元模型。图 2(c)中的圆圈表示一个神经元的模型。 xk 取值 0 和 1,表示该神经元接收的突触数量。
图S1。 用于案例(a)3(无噪声,t = 0。的斑点检测方法的结果)的结果 05)和(b)10(泊松噪声,t = 0。 2)。 红色圆圈是检测到的斑点的中心。 绿色正方形围绕着真实的斑点,而无需斑点,即 最接近检测到的点位置正是真正的斑点位置。 黄色正方形围绕着斑点移动,即 最接近检测到的点位置并不完全是真实的位置。 在(b)红色箭头指向检测到的位置,这些位置不完全在真实的位置,仅归因于噪声。S1。用于案例(a)3(无噪声,t = 0。05)和(b)10(泊松噪声,t = 0。2)。红色圆圈是检测到的斑点的中心。绿色正方形围绕着真实的斑点,而无需斑点,即最接近检测到的点位置正是真正的斑点位置。黄色正方形围绕着斑点移动,即最接近检测到的点位置并不完全是真实的位置。在(b)红色箭头指向检测到的位置,这些位置不完全在真实的位置,仅归因于噪声。