背景 PROTAC(蛋白水解靶向嵌合体)代表了一类有前途的新型药物,可选择性地降解细胞中的目标蛋白质。PROTAC 是具有两个功能端的小分子,一个小分子端与目标蛋白质结合,另一端与 E3 泛素连接酶结合。PROTAC 成分将泛素连接酶募集到目标蛋白质,导致其泛素化并随后被蛋白酶体降解。PROTAC 已被开发用于多种癌症靶标,包括致癌激酶、表观遗传靶标和最近的 KRAS G12C 蛋白,其中几种目前正在临床试验中针对各种癌症进行测试。在临床前癌症模型中已报告对 PROTAC 的获得性耐药性,这表明 PROTAC 疗法对癌症的长期益处可能有限。因此,需要一种能够克服对 PROTAC 的耐药性并提供持久药物反应的治疗方法。发明概述
Neddylation 是一类将泛素样蛋白 NEDD8 与底物蛋白连接在一起的蛋白质翻译后修饰,可参与多种重要的细胞过程并产生多种生物学效应。目前,Neddylation 底物研究最为深入的是 Cullin 蛋白家族,它是 Cullin-RING E3 泛素连接酶复合物的核心亚基,通过促进多种关键调控蛋白的泛素化和随后的降解来控制许多重要的生物学过程。中枢神经系统中蛋白质 Neddylation 的正常或异常过程可导致一系列正常功能的发生和疾病的发展,从而提供一种有吸引力、合理且有效的靶向治疗策略。因此,本研究对中枢神经系统中的 Neddylation 现象进行综述,并总结相应的底物,最后详细描述了 Neddylation 与中枢神经系统疾病的关系以及可能通过调控 Neddylation 来治疗相关疾病的治疗方法。
PROTAC 提供了一种新机制,与传统的小分子抑制剂相比,它们可以高选择性地显著降低细胞中目的蛋白 (POI) 的利用度,同时大大降低副作用 [1]。第一个 PROTAC 由 Craig M. Crews 于 2001 年开发,自这一突破以来,该领域在过去二十年中得到了迅速发展 [2]。PROTAC 具有由三个元素组成的双功能结构——E3 泛素连接酶配体 [3,4]、POI 配体和连接两个配体的连接区。POI 配体通过与目的蛋白结合并将其隔离到连接的 E3 配体上,选择性地靶向并“劫持”目的蛋白。然后,E3 连接酶配体从胞质中募集 E3 泛素连接酶到含有结合目标蛋白的 PROTAC 复合物中,连接区将 POI 和 E3 连接酶配体结合在一起 [ 5 ]。因此,目标蛋白和 E3 连接酶被人为地拉近,从而允许蛋白靶标进行多泛素化,随后被蛋白酶体破坏(图 1 )。PROTAC 可用于破坏任何蛋白靶标,甚至是非天然泛素化的蛋白。文献表明,使用 PROTAC 技术可以降解 50 多种不同的靶蛋白。目前的靶标包括蛋白激酶、核受体和转录因子,还有更多潜在靶标正在开发中 [ 6 ]。本文涵盖的概念
图2 PTM研究中的关键范例。在所有面板中(以及本文中的其他数字),用浅红色显示了修改,绿色的蛋白质底物,蓝色的作者,黄色的橡皮擦和紫罗兰的读者。(a)通过蛋白质磷酸化调节酶糖原磷酸化酶的糖原降解活性。该酶的磷酸化和去磷酸化最终受激素胰高血糖素和胰岛素调节,通过用虚线箭头示意性地指示的信号通路。(b)蛋白质泛素化作为26S蛋白酶体降解的信号。泛素化反应是由由E1,E2和E3蛋白组成的酶促级联反应,需要ATP。底物上的Degron基序通过与E3连接酶进行物理相互作用来促进泛素化。poly(ubiquityl)atted底物通过26S蛋白酶体内的受体蛋白识别,展开和降解。(c)通过组蛋白代码调节染色质结构和基因表达。组蛋白尾部的蛋白质修饰是由作者酶安装的,由橡皮擦酶除去,并被读取器蛋白识别。(d)基于面板C的PTMS调节蛋白质的一般方案。(E)从单个蛋白质编码基因产生多种蛋白质成型的变异来源。单个基因可以剪接以产生多种同工型,可以通过差异PTM模式进一步多样化。该图中省略的蛋白质成型多样性的其他来源包括,例如,单核苷酸多态性和替代翻译起始位点。ac,乙酰化;我,甲基化; P,磷酸化; UB,泛素。
间变性甲状腺癌 (ATC) 是最具侵袭性和恶性程度的实体肿瘤之一。泛素蛋白酶体系统存在于所有真核细胞中,对细胞稳态至关重要。但其在 ATC 中的潜在作用仍不清楚。TRIM11 是一种 E3 泛素连接酶,据报道在多种人类癌症中充当致癌基因。本研究旨在揭示 TRIM11 在 ATC 中的致癌功能。使用 Western blot 测量 TRIM11 和 YAP 的蛋白表达,而使用实时 PCR 测量 YAP 靶基因。CCK8 测定用于检测细胞活力;划痕愈合试验和 transwell 测定用于测量 ATC 的迁移能力。异种移植瘤模型用于体内研究。免疫沉淀试验用于检测 YAP 和 TRIM11 之间的相互作用域。并用基于泛素的免疫沉淀实验检测YAP发生的具体泛素化方式。TRIM11的缺失显著降低了ATC细胞的增殖和迁移能力,增加了细胞对化疗的敏感性,而YAP的过表达可以进一步挽救这种效应。TRIM11的缺失降低了ATC中YAP蛋白水平和YAP/TEAD靶基因,如CTGF、ANKRD1和CYR61。这表明TRIM11是Hippo信号通路的调控因子。免疫沉淀实验表明TRIM11的RING结构域对于与YAP的WW结构域的相互作用至关重要。进一步的机制分析表明TRIM11促进YAP的单泛素化,从而延长其蛋白半衰期。此外,TRIM11启动子分析表明SOX13通过与TRIM11启动子结合来激活TRIM11的转录。综上所述,本研究揭示了TRIM11在ATC中的致癌功能,TRIM11是Hippo通路的翻译后调控因子,靶向TRIM11可能是治疗ATC的一种潜在方法。
背景 生长素诱导降解 (AID) 技术可通过化学遗传学控制蛋白水解 [ 1 ]。为了应用 AID,需要通过基因工程将不稳定肽或“降解决定子”标记到目标蛋白上。生长素受体(如 Os TIR1)在相同细胞中外源表达,作为 Skp1-Cullin1-TIR1 (SCF TIR1 ) 泛素连接酶复合物的底物识别亚基发挥作用。生长素(如吲哚-3-乙酸,IAA)作为化学胶水连接 SCF TIR1 泛素连接酶和降解决定子标记蛋白,导致降解决定子标记蛋白快速多泛素化和蛋白酶体降解 [ 1 , 2 ]。 AID 能够快速高效地降解靶蛋白,避免长期沉默或 CRISPR 敲除过程中出现的副作用,并为理解动态生物过程中不同靶蛋白的功能提供了重要的机制见解 [ 3 – 7 ]。然而,一些障碍限制了我们充分发挥 AID 潜力的能力。
三方基序67(Trim67)是Trim蛋白家族的成员,是E3泛素连接酶。我们的先前研究表明TRIM67表达与癌变之间存在关系,表明TRIM67表达与P-TNM阶段,淋巴结转移,肿瘤大小,癌细胞分化和预后不良有关。此外,TRIM67免疫染色结果与临床病理学特征有关。TRIM67以有利的方式激活了Notch途径,以增强细胞侵袭,迁移和增殖。非典型配体三角洲(如非典型的Notch配体1(DLK1))抑制了Notch1受体的功能,而Notch1受体的功能又阻止了Notch途径的激活。此外,我们研究了TRIM67影响Notch途径的机制。我们发现TRIM67通过通过其环域泛素DLK1泛素域来改变非小细胞肺癌(NSCLC)细胞的行为,从而激活了Notch途径。在一起,这些发现表明TRIM67可能参与促进NSCLC的生长。
铁凋亡被认为是脊髓损伤(SCI)激活的细胞死亡途径之一。然而,管理此过程的确切调节机制仍然鲜为人知。在这里,这项研究确定了TRIM32,一种E3泛素连接酶,是神经元铁毒性神经元的关键增强子。trim32通过加速GPX4的降解来促进神经元萎缩,这是甲状腺毒性的必不可少的抑制剂。神经元中TRIM32的条件缺失显着抑制神经元的铁肿瘤并促进神经元存活,最终改善了SCI后小鼠运动功能恢复。然而,TRIM32的过表达表现出严重的神经元丧失和行为功能差,可能会因抑制剂liproxstatin-1而减弱。从机械上讲,TRIM32与GPX4相互作用,在K107处促进了GPX4的K63连接的泛素化修饰,从而增强了GPX4的p62依赖性自噬降解。此外,ROS-ATM-CHK2信号通路在S55处磷酸化的TRIM32,进一步导致SCI后GPX4泛素化和降解以及随后的神经元肥胖病,表明ROS和TRIM32之间的阳性反馈回路循环循环。在临床上,SCI患者可显着促进脂质过氧化。这些发现表明,TRIM32是一种神经元螺氏凋亡增强剂,在SCI后通过促进K63连接的泛素化和随后的p62依赖性自载体脱离GPX4的GPX4,对小鼠的神经元存活和运动型恢复有害。
泛素化是通过电离辐射(IR)诱导的DNA双链断裂(DSB)的正确修复所需的至关重要的翻译后修饰。dsbs主要通过同源重组(HR)修复,并且在不存在的情况下非同源末端连接(NHEJ)。此外,微型学介导的终端连接(MMEJ)和单链退火(SSA)提供了备份DSBS修复途径。然而,控制其使用的机制仍然知之甚少。通过在IR之后使用泛素系统的高分辨率CRISPR筛选,我们会系统地揭示细胞存活所需的基因,并阐明E3泛素连接酶SCF Cyclin F在依赖细胞周期依赖性DSB修复中的关键作用。我们表明,SCF细胞周期蛋白介导的EXO1降解可防止有丝分裂中的DNA末端切除,从而允许MMEJ发生。此外,我们确定了一个保守的细胞周期蛋白识别基序,与其他细胞周期蛋白所使用的基序不同,对细胞周期蛋白的特异性具有广泛的影响。