摘要 随机泡沫训练多个模糊规则泡沫函数近似器,然后将它们组合成单个基于规则的近似器。泡沫系统在来自训练有素的神经分类器的引导随机样本上独立训练。泡沫系统将神经黑匣子转换为可解释的规则集。基于模糊规则的系统具有底层概率混合结构,可对每个输入的规则产生可解释的贝叶斯后验。规则泡沫还通过广义概率混合的条件方差来衡量其输出的不确定性。随机泡沫通过平均其吞吐量或规则结构来组合学习到的加性模糊系统。随机泡沫在其规则、规则后验和条件方差方面也是可解释的。30 个 1000 规则泡沫在 MNIST 数字数据集的随机子集上进行训练。每个这样的泡沫系统的分类准确率约为 93.5%。平均吞吐量的随机泡沫实现了 96。 80% 的准确率,而仅对其输出进行平均的随机泡沫则实现了 96.06% 的准确率。吞吐量平均的随机泡沫也略胜于对 30 棵分类树进行平均输出的标准随机森林。30 个 1000 规则泡沫也在深度神经分类器上进行训练,准确率为 96.26%。对这些泡沫吞吐量进行平均的随机泡沫本身的准确率为 96.14%。对其输出进行平均的随机泡沫准确率仅为 95.6%。附录证明了加法系统模糊近似定理的高斯组合泡沫版本。
7.1.理性的早期概念 .................................................................... 134 7.2.价格在市场经济中的作用 .............................................................. 135 7.3.理性个体和预期效用规则 .............................................................. 136 7.4.理性市场的定义 .............................................................................. 138 7.5.基本估值 ...................................................................................... 138 7.6.无套利假设和一价定律 ...................................................................... 139 7.7.资产定价的基本定理 ........................................................................ 140 7.8.马丁格尔定价的说明 ........................................................................ 143 7.9.马丁格尔和新古典金融 ...................................................... 145 7.10.套利是否存在重要限制?......................................145 7.11.有效市场假说 ...................................................... 146 7.12.马丁格尔、曼德布洛特和 1987 年 10 月大崩盘 ............................................................................................................. 147
纳米细胞聚合物(即细胞和壁在纳米范围内的细胞聚合物)于 21 世纪初首次生产出来,Yokoyama 等人 [ 1 ] 的研究是该领域的主要先例,他们利用超临界二氧化碳生产了纳米细胞结构。然而,直到十年后,这一研究领域才开始显着发展,吸引了多个国际研究小组致力于获得细胞在纳米范围内的细胞聚合物 [ 2 ]。2010 年至 2014 年,块体纳米细胞泡沫生产的基础得以建立,CO 2 气体溶解发泡技术迅速被证明是此类材料最合适的生产路线(该技术的详细信息和理论基础可在其他地方找到)[ 2 – 4 ]。随着技术的不断进步(如更高的饱和压力、更低的饱和温度、更快的压降速率)和从无机纳米颗粒到嵌段共聚物的多种成核剂的出现,我们得到了大量具有亚微米和纳米泡孔的多孔聚合物[2]。尽管多种聚合物均可实现亚微米泡孔,但无定形聚合物如聚醚酰亚胺 (PEI)、聚苯乙烯 (PS) 以及尤其是聚甲基丙烯酸甲酯 (PMMA) 提供了最佳的纳米蜂窝结构,其泡孔尺寸甚至低于 100nm,并且密度显著降低[2]。这些年来,在泡孔尺寸和相对密度降低方面取得的不断进展提高了人们对这些先进材料的期望,旨在实现更小的泡孔尺寸和更大的孔隙率。此外,根据理论预测和先前的经验,泡孔尺寸减小到微米范围对这些材料的物理性能有积极影响,纳米蜂窝聚合物泡沫有望表现出卓越的物理性能。例如,纳米泡沫可以提高隔热性能、降低介电常数、增强机械性能,甚至提高光学透明度 [2,3]。Costeux [2] 在 2014 年仔细分析了该领域的这一非凡发展和这些期望,指出了其他尚未解决的挑战,例如开孔纳米泡沫结构的生产、制定策略以消除或避免气体溶解发泡典型的固体外皮的形成,以及开发生产此类材料的连续工艺的必要性。因此,随着纳米泡沫领域自 2015 年以来持续增长,有必要对其进展进行批判性分析,评估是否满足了预期、对其理解的进展、已解决和正在进行的挑战,以及保持该领域增长的关键关注点。在此,该分析的结构如下。首先,简要总结了纳米泡沫生产的最新进展,重点突出最相关的成就和挑战。然后,讨论其物理性质研究的进展,随后评估克服上述挑战的成功程度。最后,从这一批判性分析中得出的主要思想,确定了
1 同德胜大学机械、生物力学和多物理应用超材料研究组,胡志明市 758307,越南 2 同德胜大学应用科学学院,胡志明市 758307,越南 3 伊斯兰阿扎德大学亚苏伊分会青年研究员与精英俱乐部,亚苏伊 7591493686,伊朗;alal171366244@gmail.com 4 里昂 ECAM,里昂大学 ECAM 实验室,69005 里昂,法国;ahmad.hajjar@ecam.fr 5 萨坦本阿卜杜勒阿齐兹王子大学瓦迪阿德瓦瑟工程学院机械工程系,瓦迪阿德瓦瑟 11991,沙特阿拉伯; oubeytaha@hotmail.com 6 喀土穆大学工程学院机械工程系,喀土穆 11111,苏丹 7 托木斯克国立大学对流传热传质实验室,列宁大街 36 号,634050 托木斯克,俄罗斯;sheremet@math.tsu.ru 8 克尔曼 Shahid Bahonar 大学工程学院机械工程系,克尔曼 7616913439,伊朗;mohsensp@kth.se 9 瑞典皇家理工学院材料科学与工程系,斯德哥尔摩 SE-100 44,瑞典 * 通信地址:mohammad.ghalambaz@tdtu.edu.vn (MG);chrihs@kth.se (CH-S.)
在压缩负载下研究了基于陶瓷泡沫和ALSI10MG轻质铝合金的互穿金属陶瓷复合材料。陶瓷预成型是通过机械搅拌,干燥和最终烧结而产生的。它的相对密度约为25%,并通过铝合金通过气压浸润渗透。压缩负荷期间的损伤过程以及对裂纹发育的理解是这项研究的重点,并通过补充2D和3D表征方法获得。因此,使用通用测试机,数字图像相关性和显微镜设置的2D表面原位研究设置。进行3D研究,开发并进行了具有原位X射线计算机断层扫描的压缩测试,以了解材料裂纹的生长和裂纹的传播,以及其互穿金属 - 陶瓷复合材料内的失效机制。材料在平行于载荷方向的陶瓷相中显示裂纹起始。随后裂纹簇的形成随后发生了故障机理的变化,这是由于剪切应力支配的失败,其宏观裂纹在45°方向上的宏观裂缝在载荷方向上发生了变化。可以确定复合材料的良好失败。2D和3D调查方法的组合可以深入了解互穿复合材料的失败行为,从而有助于理解超出当前知识状态的失败机制。
在接近太赫兹频率下工作的下一代无线通信系统中,具有尽可能低的介电常数和损耗因子的电介质基板变得至关重要。在本文中,我们采用模板辅助溶胶-凝胶法合成了高度多孔(98.9% ± 0.1%)和轻质二氧化硅泡沫(0.025 ± 0.005 g/cm 3 ),它们具有极低的相对介电常数(300 GHz 时 ε r = 1.018 ± 0.003)和相应的损耗因子(300 GHz 时 tan δ < 3 × 10 −4)。在泡沫板上浸涂一层纤维素纳米纤维薄膜后,可获得足够光滑的表面,在此表面上可方便地沉积对电子和电信设备应用很重要的导电金属平面薄膜。在这里,银薄膜的微图案通过荫罩溅射到基板上,以展示双开口环谐振器超材料结构作为在亚太赫兹波段工作的射频滤波器。
dap®无纱®专门配制,用于窗户和门框周围。虽然它可以用作通用泡沫,但这种革命性的扩展聚氨酯泡沫旨在空气密封,而无需施加可能对窗户或门框稳定性有害的压力。这种低压泡沫实际上是自动排气的,这意味着一旦填充空隙,被困的气体就会离开泡沫 - 与传统的聚氨酯泡沫不同,可能会继续扩大和施加压力。最终结果是窗户和门周围的气密密封,以帮助降低能源成本。
随着世界快速发展的经济,天然气,石油和煤炭等不可再生的自然资源的征收日益增加。这些不可再生的资源是环境污染的主要来源,它对减少污染和环境保护的需求构成压力。为了克服这些问题,搜索者正在专注于未来的替代性清洁能源,低成本和环保资源[1 E 7]。氢是能量载体的合适候选者之一,通过光催化和电化学水分裂方法对此进行了广泛研究[8 E 13]。与大规模生产的光催化相比,电解具有较高的效率[14 E 17]。elec- trocatalysts在电解过程中起着至关重要的作用,在电解过程中,由于阴极氢进化反应(HER)和氧作为阳极氧进化反应(OER)而产生氢。到目前为止,她的铂(PT)和OER的氧化偶氮被认为是最好的电催化剂,但稀缺性和高成本限制了它们的大规模生产[18,19]。氢被认为是在不久的将来可以将能量从化学能量转化为燃料电池中的电能的主要来源。用于氢生产,通常使用碱性电解方法。在碱性水电中,强大的碱性培养基被用作电解质,而hy- droxide阴离子则通过这种强的碱性培养基传递到阳极表面,它们会在其中失去电子。像镍之类的过渡金属是贵族金属的良好替代品,因为低成本,高催化性能和地球丰富的材料。应在细胞中使用具有高离子迁移率的电解质,以扩大有合并性。氢氧化钾(KOH)通常用于碱性水电解中,以避免酸性电解质发生的腐蚀问题[20,21]。通过电催化水分裂方法生产氢非常昂贵,而且碳氢化合物的产生中有96%的氢生产[22]。研究人员正在专注于开发具有较高电催化效率且对她的较低电势的新材料的新策略[23]。在电化学中,她是一个广泛调查的行动。为了增强反应动力学,阴极材料必须具有高催化效率,低成本,高表面积和高化学稳定性的特殊组合[24]。除了这些特征外,催化剂的受控形态和表面结构是
随着柔性电子产品和绿色汽车的快速普及,合理设计和轻松构建具有优异机械性能和高电化学性能的定制功能材料至关重要。在此,通过利用数字光处理(DLP)和化学气相沉积(CVD)两种现代工业技术,展示了一种独特的3D空心石墨泡沫(HGF),其表现出周期性的多孔结构和坚固的机械性能。有限元分析(FEA)结果证实,合理设计的螺旋状多孔结构提供了均匀的应力区域并减轻了由应力集中引起的潜在结构故障。典型的HGF在48.2 mg cm -3的低密度下可以显示出3.18 MPa的高杨氏模量。多孔 HGF 进一步被活性 MnO 2 材料覆盖,质量负载高达 28.2 mg cm -2 (141 mg cm -3 ),MnO 2 /HGF 电极仍可实现令人满意的 260 F g -1 比电容,对应的面积电容为 7.35 F cm -2 ,体积电容为 36.75 F cm -3 。此外,组装的准固态非对称超级电容器还表现出优异的机械性能和电化学性能。
锂离子电池由于其高能量密度、优异的循环寿命和实惠的价格,已被广泛应用于消费产品和电动汽车。 [1,2] 然而,尽管锂离子电池中使用传统的石墨负极在循环过程中具有出色的稳定性,但由于其固有的低理论容量(372 mAh g 1 ),其循环容量受到限制。 因此,最近的研究主要集中在开发锂离子电池的高容量电极上,以满足当前消费者的需求。 因此,已经提出了许多新型负极材料来实现更好的循环性能。 特别是,过渡金属氧化物(例如Ni,Co,Fe等)作为用于锂离子电池的高容量负极而受到了广泛的关注,[3] 其中NiO因其高的理论容量(718 mAh g 1 )、可及性和价格实惠而受到特别的关注。然而,过渡金属氧化物仍有许多需要克服的限制,例如电子电导率低、初始库仑效率差、充电/放电过程中体积变化大,所有这些最终都会导致循环不稳定和能量密度损失。为了克服这些问题,可以使用多孔或纳米级过渡金属氧化物活性材料作为 LIB 阳极,以提供更大的表面积、充电/放电过程中的更低体积变化和更短的扩散路径。[4,5] 到目前为止,已经使用多种方法合成多孔纳米材料,包括气相沉积、[6] 脱合金、[7] 3D 打印、[8]