在PT-对称周期性堆栈中电磁波的传播由介电介质分离,这些叠层由具有平衡损耗和增益的介电培养基分隔。确定了pt-对称半导体 - 电介电量堆栈的特征性分散性能的特征频率。考虑了层的损耗/增益水平和层厚度对带谱的演变的影响。在这里我们表明,有效的培养基方法无法充分描述PT-对称超晶体中的传播波。证明了PT-对称双曲系统中各向异性传递共振的存在和高度反射。检查了结构参数和入射角对散射基质的PT-对称性跃迁的影响。
第二单元 电磁波 9 分类 - 电磁波的应用、传播特性、低频和高频波的传播 - 折射率 (RI) - 影响 RI 的因素 - 标准和环境条件下光和近红外波群的计算 - 环境条件下微波 RI 的计算 - 参考折射率 - 第一次速度校正的实时应用。大气参数的测量 - 平均折射率 - 第二次速度校正 - 总大气校正 - 温度 - 压力传感器的使用。
使用适当的3D建模软件分别创建了头部模型的每个组织和生物器官。文献中的电磁参数分配给模型内的每个器官和组织,图。2,并进口到CST。这些参数为:相对介电介电常数(εr),比电导率(σ)和组织密度(ρ)。这些参数强烈影响电磁波的传播,反射和衰减。对于已经进行了数值模拟的2600 MHz频率,上述参数列于表1 [20]。连接头隔室时,必须确保分离表面不会重叠。仅以这种方式,才能正确满足边界条件。
这项工作的目的是对受冲击载荷的六角硼核晶格中的精细结构参数和能量散射通道进行彻底分析。这种外部影响会导致材料中的冲击波形成。已经表明,可以通过在正常的方向上向单个原子行给出初始脉冲来启动冲击波。同时,此类初始条件与稳定的冲击波曲线不符,但在足够短的过渡期约为0.1 ps后形成。已经表明,所研究材料中的冲击波只能在两个晶体学方向(即曲折和扶手椅方向)传播。在所有情况下,冲击波传播的速度比所研究材料中的声音速度快。已经研究了冲击波传播的机制。我们已经揭示了锯齿形方向冲击波的传播与最小的能量损耗有关。我们发现冲击波传播期间材料中能量耗散的主要机制是键长和键角振荡。
分子/气溶胶和原子的吸收 [5, 6]。雨、雪、雾、污染等因素会影响电磁辐射的传输,特别是光波在大气中的传输 [7]。除了上述吸收和散射效应外,折射率波动也会影响光波的传播。在高功率激光器中,吸收还会加热传播路径上的介质,导致光束发散,平均强度的峰值明显降低,这种效应称为“热晕” [8]。然而,激光功率限制和开发更强大激光器的高昂成本等挑战促使人们提出了“光束组合”技术。传统上,有两种光束组合方法:相干光束和非相干光束。在目标上产生高强度的相干光束组合需要线宽非常窄的激光器
摘要 神经科学的一个基本挑战是解释广泛的大脑区域如何灵活地相互作用以支持行为。我们假设,振荡的行波是神经协调的关键机制,它们以独特的模式在皮质中传播,控制不同区域的相互作用。为了验证这一假设,我们使用了进行多项记忆实验的人类的直接大脑记录和一个可以灵活测量行波传播模式的分析框架。我们发现,行波不仅以平面波的形式沿皮质传播,还以螺旋波、源汇波和更复杂的模式传播。行波的传播模式与行为的新方面相关,特定的波形反映了特定的认知过程,甚至是个人记住的项目。我们的研究结果表明,大规模皮质行波模式揭示了大脑中认知过程的空间组织,可能与神经解码有关。
航空母舰上飞机的拦阻动力学涉及绳索中瞬态波的传播过程和飞机的平稳减速过程。这给整个过程的模拟带来了很大的挑战,因为前者需要较小的时间步长来保证稳定性,而后者需要较大的时间步长来减少计算时间。针对这一问题,本文提出了一种采用变时间步长积分方案的拦阻装置系统全尺寸多体动力学模型。特别地,采用一种能够描述三维空间中任意大位移和转动的新型缆单元来网格化钢丝绳,并采用阻尼力来模拟液压系统的影响。然后,研究了着舰过程中钢丝绳的应力。结果表明,应力峰值主要来源于应力波在甲板滑轮间的传播、反射和叠加。偏离中心线着陆时的最大应力略小于沿中心线着陆时的最大应力。本文提出的多体进近和拦阻装置系统模型也为整个机构的设计和优化提供了一种有效的方法。
解锁光谱对纳米级的真正潜力需要开发稳定和低噪声激光源。在这里,我们开发了一个基于由飞秒纤维激光器泵送的全正常分散纤维的低噪声超脑(SC)来源,并显示出高分辨率,在近芳烃(NIR)区域的频谱分辨出近场测量。具体来说,我们探讨了对无孔径散射型扫描近场光学显微镜(S-SNOM)的减少噪声要求,包括SC的固有脉冲到脉冲波动。我们使用SC的光源来展示第一个NIR,频谱解决的S-SNOM测量,这种情况是最先进的商业SC来源太嘈杂而无法有用。我们在单个测量中绘制了在波长区域的1.34–1.75μm波长区域中表面等离子体偏振子(spp)波的传播,从而实验表征了NIR中SPP的分散曲线。我们的结果代表了一种技术突破,有可能在近场研究中实现低噪声SC来源的广泛应用。