1. 恒定负载点下汽车涡轮增压器的传热:实验和计算研究 A. Romagnoli、R.M.F. Botas 1-7 2. 燃气轮机冷却系统的多尺度热测量和设计 HyungHee Cho、Kyung Min Kim、SangwooShin、Beom Seok Kim 和 Dong Hyun Lee 8-13 3. 小型双向流离心泵作为终末期患者的心室辅助装置 Andy C C Tan 14-19 4. 不同扫掠轴流风扇壁面压力波动的实验研究 J. Hurault、S. Kouidri、F. Bakir 和 R. Rey 20-26 5. 使用格子玻尔兹曼方法进行中观和宏观尺度流体流动模拟 A.A. Mohamad 27-32 6. 局部动力学工程流动性能:理论与应用 吴杰志,毛峰,苏伟东,吴红,李秋实 33-43 7. 满负荷尾水管喘振的一维分析 Yoshinobu Tsujimoto,KoichiYonezawa,ChangkunChen 44-56 8. 先进无二氧化碳发电站技术的未来发展 D. Bohn 57-65 9. 离心泵叶轮-蜗舌相互作用和非稳定流体流动的数值分析 K.W Cheah,T.S. Lee,S.H Winoto 和 Z.M Zhao 66-71 10.往复式内燃机涡轮增压器非稳定特性分析程序 A. Torregrosa,J. Galindo, J.R. Serrano 和 A. Tiseira 72-79 11. Alta S.P.A. 和比萨大学的空化和涡轮泵流体动力学研究 Angelo Cervone、Lucio Torre、Angelo Pasini 和 Luca d'Agostino 80-88 12. 减速旋流控制
电动汽车(电动汽车)中座舱对电池选项卡的激光焊接至关重要。确保焊接质量至关重要,因为它取决于诸如孔隙率的产生,熔融池中的流体流动,施加激光功率和焊接速度等因素。然而,常规激光焊接技术主要侧重于沿焊接距离调节激光参数,努力有效地减轻孔隙率的形成。虽然对激光角沿焊缝截面的效应进行了广泛的研究,但尚未探索过轴轴激光角的影响,即在垂直于焊接方向的平面中的角度的效果,尚未探索。这项研究通过在不同激光能密度下改变激光轴轴的角度,以优化专门为减少孔隙率的过程,从而引入了一种创新的激光焊接方法。通过实施铝AA1050的激光焊接的三维计算流体动力学(CFD)模型,我们在采用不同的离轴角度的同时提供了详细的分析流体流量和熔体池尺寸。我们的模型结合了多种反射,向上的蒸气压和后坐压力,以解释不同激光轴轴轴的孔隙率的形成。结果表明,在优化的激光功率和焊接速度下增加激光轴的角度可显着降低孔隙率。在激光外轴角为4.92°时,数值分析与实验熔体池宽度为11%,最小误差为2.74°,最小误差为2.6%。对于熔体池深度,在4.92°的离轴角度为4.2%,最小差为7.2%,在7.42°的离轴角度下的最小差为0.5%。本研究提出了一种通过解决孔隙形成的特定挑战来改善激光焊接过程的新方法。
摘要。世界上的动力工程在十字路口吗?持续的气候变化和新技术的兴起(物联网),智慧城市或电子活动会给我们带来对世界未来能源的完全不同的看法?在此问题上,我们的实际愿景和发展预测是什么?关于此事的人,大型能源公司,一些政客,环保主义者,气候研究人员和各种有远见的人是正确的?基于太阳能和氢的转化是能源部门的圣杯吗?本文的作者试图找到这些问题和许多其他问题的答案。今天,我们已经可以接受一个事实证明的论点,即我们文明的快速而危险的气候变化也可以归因于高碳和低效的动力工程。动力工程和气候中立不再只是政客,公司和科学家的问题,而是对我们文明的挑战。如果我们要拯救地球,我们的文明必须改变其心态,并发展将不优先考虑经济增长和高昂消费,而是与自然和谐相处的可持续增长。为此,人们对能源和全球转型的思考方式也必须改变。上述一般性评论,也是从传统大规模化石燃料的能源发电到基于可再生资源的分布式能源产生的逐步过渡的事实,这是本文的主要信息。本文还旨在讨论在我们国家的能源转型过程中,在格达斯克,波兰科学院(IMP PAN)流体流动机械学院的作用。作为在环境友好友好的动力工程领域,超过十几个高预算的国家和欧洲计划的协调实体在我们国家为开发Posmumer Power Engineering(或更广泛地:公民力工程)的发展所需的条件做出了一定的贡献。
电动汽车(电动汽车)中座舱对电池选项卡的激光焊接至关重要。确保焊接质量至关重要,因为它取决于诸如孔隙率的产生,熔融池中的流体流动,施加激光功率和焊接速度等因素。然而,常规激光焊接技术主要侧重于沿焊接距离调节激光参数,努力有效地减轻孔隙率的形成。虽然对激光角沿焊缝截面的效应进行了广泛的研究,但尚未探索过轴轴激光角的影响,即在垂直于焊接方向的平面中的角度的效果,尚未探索。这项研究通过在不同激光能密度下改变激光轴轴的角度,以优化专门为减少孔隙率的过程,从而引入了一种创新的激光焊接方法。通过实施铝AA1050的激光焊接的三维计算流体动力学(CFD)模型,我们在采用不同的离轴角度的同时提供了详细的分析流体流量和熔体池尺寸。我们的模型结合了多种反射,向上的蒸气压和后坐压力,以解释不同激光轴轴轴的孔隙率的形成。结果表明,在优化的激光功率和焊接速度下增加激光轴的角度可显着降低孔隙率。在激光外轴角为4.92°时,数值分析与实验熔体池宽度为11%,最小误差为2.74°,最小误差为2.6%。对于熔体池深度,在4.92°的离轴角度为4.2%,最小差为7.2%,在7.42°的离轴角度下的最小差为0.5%。本研究提出了一种通过解决孔隙形成的特定挑战来改善激光焊接过程的新方法。
材料建模一直是一个具有挑战性的问题。此类建模中出现了许多复杂性,例如非线性材料行为、复杂物理和大变形,以及多物理现象。此外,材料通常会表现出丰富的厚度响应行为,这阻碍了使用经典简化方法,并且在使用经典模拟技术时需要极其精细的网格。模型简化技术似乎是减少计算时间的合适解决方案。许多应用和材料成型过程都受益于模型简化技术提供的优势,包括固体变形、传热和流体流动。此外,数据驱动建模的最新发展为材料建模开辟了新的可能性。事实上,使用数据建模对模拟进行校正或更新导致了所谓的“数字孪生”模型的形成,从而通过数据驱动建模改进了模拟。通过使用机器学习算法,也可以对当前模型不准确的材料进行数据驱动建模。因此,在材料制造过程和材料建模框架内有效构建数字孪生的问题如今已成为一个越来越受关注的话题。数字孪生技术的最新进展是使用实验结果来校正模拟,同时也在无法通过实验定义基本事实时将其变化纳入正在运行的模拟中。本研究主题讨论了模型简化技术、数据驱动建模和数字孪生技术的最新发展,以及它们在材料建模和材料成型过程中的应用。在 Victor Champaney 等人的论文中,作者解决了非平凡插值的问题,例如,当曲线中的临界点(例如弹塑性转变点)移动位置时就会出现这种问题。为了找到该问题的有效解决方案,本文展示了几种方法,结合了模型简化技术和代理建模。此外,还展示了通过为预测曲线提供统计界限来量化和传播不确定性的替代品。本文展示了几种应用,以经典材料力学问题为例。
材料建模一直是一个具有挑战性的问题。此类建模中出现了许多复杂性,例如非线性材料行为、复杂物理和大变形,以及多物理现象。此外,材料通常会表现出丰富的厚度响应行为,这阻碍了使用经典简化方法,并且在使用经典模拟技术时需要极其精细的网格。模型简化技术似乎是减少计算时间的合适解决方案。许多应用和材料成型过程都受益于模型简化技术提供的优势,包括固体变形、传热和流体流动。此外,数据驱动建模的最新发展为材料建模开辟了新的可能性。事实上,使用数据建模对模拟进行校正或更新导致了所谓的“数字孪生”模型的形成,从而通过数据驱动建模改进了模拟。通过使用机器学习算法,也可以对当前模型不准确的材料进行数据驱动建模。因此,在材料制造过程和材料建模框架内有效构建数字孪生的问题如今已成为一个越来越受关注的话题。数字孪生技术的最新进展是使用实验结果来校正模拟,同时也在无法通过实验定义基本事实时将其变化纳入正在运行的模拟中。本研究主题讨论了模型简化技术、数据驱动建模和数字孪生技术的最新发展,以及它们在材料建模和材料成型过程中的应用。在 Victor Champaney 等人的论文中,作者解决了非平凡插值的问题,例如,当曲线中的临界点(例如弹塑性转变点)移动位置时就会出现这种问题。为了找到该问题的有效解决方案,本文展示了几种方法,结合了模型简化技术和代理建模。此外,还展示了通过为预测曲线提供统计界限来量化和传播不确定性的替代品。本文展示了几种应用,以经典材料力学问题为例。
标题:塑料通过基于等离子体的基于等离子体的解聚,利用水性和气态排放暴露于工作夏季的陈述塑料的增殖促成了巨大的环境损害,不仅损害了动物栖息地,而且还会损害食物链,从而通过释放毒素而成为公共健康风险(例如染料和修饰符)包含塑料中。通过垃圾填埋场处理塑料和能源回收,分别是由于半衰期和温室气体排放而不是实用的解决方案。机械回收是一种解决方案,但受聚合物类型的限制并产生较低质量的塑料。目前,塑料升级,塑料向更高价值产品的转化,由于高热量要求(用于热解)是能量密集型的。等离子体为塑料的解聚提供了一种更绿色的方法,还提供了升级的可能性,以制造高价值的产品,例如高级塑料和燃料。非热等离子体尤其是能源效率的,并且在空气上的运行意味着实施不需要外来的进料气体才能运行。在这里,血浆用于基本上通过细分将聚合物解构到其前体单体。意识到这种等离子体视觉的关键是优化气相和表面化学。与液体中聚合物去聚合有关的表面化学反应令人信服,因为环境是天然散热器和血浆本身输入反应性物种的储层。此外,自组织过程可以在局部大大增强反应性物种的局部电场和密度。自组织效应尚未充分探索。这项工作的目的是研究和表征来自聚合物粉末,颗粒的液体悬浮液的相互作用以及与低频等离子体射流产生的血浆和DC 1 ATM发光的血浆相互作用的分解产物。在这里,我们旨在阐明如何使用发射光谱和FTIR推断出的等离子体参数,包括表面自组织,诱导流体流动和液滴发射效应分解过程。
6 1D 和 2D NMR 光谱:在结构生物学中的应用(周二)2+0 7 工程师会计(周二和周四)3+0 8 “知识产权”(IPR)对工业和学术界的重要性(周二)2+0 9 Linux 环境简介:操作系统、命令、实用程序和 Shell 脚本(周二和周四)3+0 10 服务设计思维(周二)2+0 11 战略管理(周二和周四)3+0 12 基础光谱学和仪器(周三)2+0 13 使用微控制器的嵌入式系统设计(周三)2+0 14 数值网格生成和流体流动计算简介(周三)2+0 15 工程结构和系统中的振动和噪声控制(周三)2+0 16 传感信号的机器学习(周四)2+0 17 信号处理的神经网络 -1 (周四和周五) 3+0 18 面向智能电网的电力系统自动化 (周四和周五) 3+0 19 复合结构分析与设计 (周五) 2+0 20 工业物联网 (IIoT) (周五) 2+0 21 工程结构与系统的结构分析与设计优化 (周五) 2+0 22 基因工程与转基因技术的进展 (周六) 2+0 23 有限元法的基本概念 (周六) 下午 2 点至 4 点 2+0 24 数据分析基础 (周六) 2+0 25 基础法语 (周六) 下午 2 点至 4 点 2+0 26 衰老与疾病的细胞与分子生物学 (周六) 下午 2 点至 4 点 2+0 27 通信协议、设计与多媒体应用(周六) 下午 2 点至 4 点 2+0 28 声学概论(周六) 2+0 29 非线性有限元法(周六) 2+0 30 性能建模与仿真(周六) 3+0 31 生物学技术在研究中的原理和应用(周六) 2+0 32 汽车工业中的智能设计方法和流程(周六) 下午 2 点至 4 点 2+0 33 无线局域网概念、安装、故障排除和测试(周六) 2+C 34 软件测试自动化(周六) 下午 2 点至 4 点 2+0
管道技术基于流体流动的普遍原理。当真实(粘性)流体流过管道时,其部分能量用于维持流动。由于内部摩擦和湍流,该能量被转换成热能。这种转换导致能量损失以流体高度来表示,称为水头损失,通常分为两类。第一种类型主要是由于摩擦,称为线性或主要水头损失。它存在于整个管道长度中。第二类称为次要或单一水头损失,是由于管网中存在的次要附属物和附件造成的。流体流动遇到的附属物是边界的突然或逐渐变化,导致流速的大小、方向或分布发生变化。这种主要和次要水头损失的分类是相对的。对于具有许多次要附属物的短管,总次要水头损失可能大于摩擦水头损失。在石油和水分配网络中,管道长度相当长,因此可以使用主要水头损失和次要水头损失这两个术语而不会产生混淆。为了对各种类型的水头损失进行一般而精确的公式化,人们进行了大量研究。Weisbach [1] 是第一个提出水头损失关系的人。正如 Bhave [2] 所指出的,Darcy 为推导关系的应用做出了巨大贡献,因此他的名字与 Weisbach 的名字联系在一起。因此,该关系通常称为 Darcy-Weisbach 公式。它本质上取决于摩擦系数和相对粗糙度。摩擦系数是雷诺数所表征的流态的函数。人们提出了几种摩擦系数的显式和隐式关系。Nikuradse [3] 进行了大量实验,实验涉及使用均匀大小的沙粒实现的光滑和人工粗糙管道。Nikuradse 图也称为 Stanton 图或 Stanton-Pannel 图,是这些研究的结果。 Colebrook [4] 比较了 Nikuradse 图表中的结果,发现其曲线与实际管道的曲线不匹配。但是,通过引入等效表面粗糙度的概念,可以将 Nikuradse 的结果用于商用管道。其他几位研究人员在文献中提供了不同的图表。Johnson [5] 使用几个无量纲组给出了商用管道的图表。Rouse [6] 绘制了代表
气溶胶沉积 (AD) 可通过气流中的粒子沉积形成致密涂层;在 AD 中,气溶胶通过收敛-发散喷嘴,以超音速粒子速度促进惯性粒子撞击所需基材。与热喷涂方法不同,AD 可以在接近室温下应用;与冷喷涂不同,在 AD 中,气溶胶通常在喷嘴上游处于大气压下。尽管之前已成功演示了 AD,但与 AD 系统中粒子运动相关的许多方面仍不太清楚。在这项工作中,我们模拟了具有平面基材的狭缝型收敛-发散喷嘴的典型 AD 工作条件下的可压缩流场分布和粒子轨迹。在检查流体流动分布时,我们发现速度和压力分布以及冲击结构对喷嘴的上游和下游工作压力很敏感。这些最终会影响粒子撞击速度。重要的是,在 AD 中,粒子阻力状态是动态的;粒子克努森数和马赫数都可以相差几个数量级。为了辅助粒子轨迹模拟,我们训练了一个神经网络,根据现有实验数据、理论极限和新的直接模拟蒙特卡罗 (DMSC) 结果预测粒子上的阻力。基于神经网络的阻力定律取决于马赫数和克努森数,与 DSMC 模拟数据相比,其一致性比预先存在的相关性更好。借助该定律,粒子轨迹模拟结果表明,对于给定的粒子密度,存在一个最佳粒子直径,以最大化粒子撞击速度。我们还发现,在 AD 中,粒子会经历与尺寸相关的惯性聚焦,即存在一个特定的粒子直径,其中粒子沉积线宽最小。小于此直径的粒子聚焦不足,大于此直径的粒子聚焦过度,因此在两种情况下都有较大的沉积线宽。使用轨迹模拟,我们还开发了一个框架,可用于评估喷嘴上游任何气溶胶尺寸分布函数的位置相关质量、动量和动能通量到沉积基质的通量。结果表明,对于实验室可达到的典型气溶胶浓度,动能通量可以接近在具有相变的对流传热中通常观察到的量级,因此 AD 中的平动能到热能的传递可能是形成致密涂层的关键因素。关键词:气溶胶沉积;收敛-发散喷嘴,惯性聚焦;惯性撞击;直接模拟蒙特卡罗