摘要——许多组织致力于将波浪能转换器技术商业化,并通过技术就绪水平推进其设计。在现场部署原型波浪能转换器之前,一个关键步骤是通过实验室测试和性能表征来验证波浪能转换器中包含的子系统和组件。2021 年,美国国家可再生能源实验室 (NREL) 开发并演示了一种系统,用于在现场部署之前使用低速、高扭矩测力计和并网高功率直流电源和接收器测试动力输出装置 (PTO)。液压测力计可以模拟波浪运动引起的 PTO 驱动,并且能够适应各种波浪周期和高度,这些波浪周期和高度由测力计的各种速度和扭矩表示。大功率双向电源允许对波浪能转换器电力电子设备进行硬件在环和控制器在环测试。本文介绍了 NREL 研究人员在现场部署之前测试新型波浪能转换器 PTO 中所有组件和子系统所使用的方法。
表 1.周期测试协议 ...................................................................................................... 35 表 2.受试者特征(组合) ...................................................................................... 41 表 3.受试者特征(按年龄划分的男性) ...................................................................... 4 表 4.受试者特征(按年龄划分的女性) ...................................................................... 3 表 5.一般结果(所有受试者) ...................................................................................... 6 表 6.结果和卡方(男性和女性) ............................................................................. 47 表 7.结果和卡方(工作量列) .............................................................................48 表 8.结果和卡方(年龄和性别) ............................................................................. 49 表 9.结果和卡方(健康水平) ................................................................ 50 表 10。所有受试者的工作量指南成功率 .............................................. 52 表 11。男性和女性的工作量指南成功率 .............................................. 53 表 12。所有工作量列的工作量指南成功率 .............................................. 54 表 13。年龄和性别综合的工作量指南成功率 .......................................... 55 表 14。所有健康水平的工作量指南成功率 .............................................. 56
摘要:本文介绍了一种验证适用于 2 类无人机的风洞螺旋桨测力计的方法。这种测力计的预期用途是表征相关尺寸和操作条件下的螺旋桨,在这些条件下,此类螺旋桨易受低雷诺数效应的影响,而这种效应在风洞中很难通过实验检测出来。尽管不确定性分析可能会增强人们对测力计数据的信心,但测力计的设计或实验安排(例如配置和仪器)可能无法检测到重要的螺旋桨特性,甚至可能在结果中产生伪影。本文提出的验证方法将叶片元素动量理论 (BEMT) 的分析结果与实验数据进行比较,以验证测力计是否捕捉到了基本的螺旋桨物理特性,以及自相似实验结果,以验证测力计是否能够解决螺旋桨直径和螺距的差异。进行了两项研究,以验证测力计实验数据是否与 BEMT 预测的性能相匹配。第一项研究考虑了三个螺旋桨,它们具有相同的 18 英寸(0.457 米)直径,螺距从 10 到 14 英寸(0.254 到 0.356 米)不等。第二项研究保持螺距不变,直径从 14 到 18 英寸(0.356 到 0.457 米)不等。在测试期间,风洞速度范围为 25 英尺/秒至 50 英尺/秒(7.62 到 15.24 米/秒),螺旋桨转速各不相同
用每只手(左右交替)进行三次测试,每次测试之间休息 1 分钟。指示参与者逐渐连续挤压至少 3 秒。考官在这三秒钟内使用口头强化。给出的口头指示包括,你准备好了吗?用尽全力挤压……再用力……再用力!……放松。II。对于每次测量,使用测力计的顺序是随机选择首先测试的手。为了评估评分者间信度,在第一位评分者测量数据后,给予十五分钟的休息时间,然后第二位评分者对每个受试者测量相同的工具测量值。为了评估评分者内信度,整个过程在 24 小时后由同一位评分者在相同的测试条件下重复。因此,从每个受试者那里获得了总共 12 次握力试验。
信度是指测量结果可重复的程度。换言之,它不仅反映相关程度,也反映测量结果之间的一致性。信度有三种类型,即评分者间信度、评分者内信度和重测信度。评分者间信度反映两个或两个以上评分者对同一组受试者进行测量时的变异。评分者内信度反映1名评分者在2次或2次以上试验中测得的数据的变异,而重测信度反映仪器在相同条件下对同一受试者进行的测量的变异。重测信度通常表示在没有评分者参与或评分者效应可忽略不计的情况下的信度,例如自我报告调查工具 3 。
本研究旨在评估使用最新一代等速测力计进行的躯干肌肉力量测试的有效性和重测信度。在 15 名健康受试者中测量了躯干屈肌和伸肌的离心、等长和向心峰值扭矩。肌肉横截面积 (CSA) 和表面肌电图 (EMG) 活动分别与竖脊肌和腹直肌的峰值扭矩和亚最大等长扭矩相关。在测试和重测期间确定了峰值扭矩测量的可靠性。对于所有收缩类型,肌肉 CSA 与峰值扭矩之间始终存在显著相关性(r = 0.74 � 0.85;P < 0.001),对于伸肌和屈肌,EMG 活动与亚最大等长扭矩之间也存在显著相关性(r P 0.99;P < 0.05)。组内相关系数在 0.87 和 0.95 之间,所有收缩模式的标准测量误差均低于 9%。测试和重测之间的峰值扭矩平均差异范围为 � 3.7% 至 3.7%,没有显著的平均方向偏差。总体而言,我们的研究结果证实了使用测试的躯干模块进行扭矩测量的有效性。此外,考虑到峰值扭矩测量的出色重测信度,我们得出结论,这款最新一代等速测力计可以放心用于评估躯干肌肉功能,以用于临床或运动目的。� 2014 Elsevier Ltd. 保留所有权利。