在海军中,无线电探测和测距系统(雷达)是探测、跟踪和有时区分友军和敌军目标的主要传感器。它们对于创建周围环境的作战图像和态势感知至关重要。雷达的性能会显著受到系统部署环境的影响。在某些大气条件下,折射效应会导致电磁管道、雷达漏洞、跳过区和/或阴影区增大。这些现象既有战术上的优势,也有劣势。例如,优势在于管道可以扩大探测范围,从而提供更多的反应时间来对抗来袭的敌军目标。劣势在于敌军目标可能无法在通常与发达管道共存的雷达漏洞和跳过区中被发现。
雷达本质上是一种利用无线电回波原理的测距系统。术语“RADAR”是“无线电探测和测距”的首字母缩写。它是一种利用无线电波定位目标的方法。发射器以脉冲的形式产生微波能量。然后,这些脉冲被传输到天线,天线将它们聚焦成一束。雷达波束很像手电筒的光束。天线以这样一种方式聚焦和辐射能量,即能量在波束中心最强,在边缘附近强度逐渐减小。同一根天线用于发射和接收。当脉冲拦截目标时,能量会以回波或返回信号的形式反射回天线。从天线,返回的信号被传输到位于接收发射器单元中的接收器和处理电路。回波或返回信号显示在指示器上。
常规、改进型常规弹药 (ICM)、双重用途改进型常规弹药 (DPICM)、烟雾弹、燃料空气炸药 (FAE)、电子对抗 (ECM)、散布式地雷、制导和自导子弹药。少数国家将能够使用核武器、化学武器和生物武器。机动、侦察和非常规部队将对地面部队构成威胁。威胁机动部队和炮兵部队将使用来自许多国家的装备。此外,由于技术扩散和机动与火力支援系统的同步,军队将变得更加复杂。电子战能力因对手而异。但是,对营和炮兵通信系统的威胁可能有效扰乱火力控制和炮兵指挥与控制。侦察和目标捕获能力也将因威胁部队而异。这些范围从单发定位雷达、现代化的声波测距系统和无人驾驶飞行器 (UAV) 到依赖视觉捕获手段。由于目标捕获、弹药和运载系统技术的改进,LW 155 在其整个生命周期内面临的威胁将会增加。威胁部队机动性和装甲的改进将直接影响轻型武器系统的生存能力。当前牵引系统的机动性有限,反应时间较长,因此更容易受到敌人反击。
传感器设计和数据分析技术的进步使遥感系统变得实用,并可用于研究和管理沿海生态系统,如湿地、河口和珊瑚礁。多光谱和高光谱成像仪可用于绘制沿海土地覆盖图、有机/无机悬浮颗粒浓度以及沿海水域溶解物质。热红外扫描仪可以准确绘制海面温度图并绘制沿海洋流图,而微波辐射计可以测量海洋盐度、土壤湿度和其他水文参数。雷达成像仪、散射仪和高度计提供有关海浪、海风、海面高度和沿海洋流的信息,这些信息对沿海生态系统有重大影响。使用机载光探测和测距系统,即使在中等浑浊的沿海水域也可以绘制水深图。由于沿海生态系统具有很高的空间复杂性和时间变化性,因此经常必须从卫星和飞机上对其进行观察,以获得所需的空间、光谱和时间分辨率。需要使用船舶、浮标和现场仪器以及有效的采样方案来校准和验证遥感信息,从而实现可靠的现场数据收集方法。本文的目的是概述可用于沿海生态系统研究的实用遥感技术。
定向能(RE)的概念是一个通用术语,涵盖产生具有一定功率和强度的电磁能的技术。 AE 系统主要使用这种定向能量来破坏、损坏或摧毁敌方装备、设施和人员。具有一定军事发展水平的国家(例如美国、英国、俄罗斯、中国、印度、以色列、法兰西共和国、韩国、土耳其共和国等)长期以来都开展与能源系统直接相关的研发(R&D)活动。我们撰写本报告的最终目标是介绍近期、中期和远期可能在相关部队指挥部门的清单中出现的 RE 系统应用和挑战。当今,科学技术发展十分迅速。其中一些人已经意识到与生物技术、纳米技术和可再生能源相关的技术威胁,并采取了必要的预防措施。在这种背景下,虽然可再生能源面临一些传统的挑战;有望成为一场变革游戏规则的变革者。直到最近,激光系统才开始发挥其进步的贡献,它能够将能量聚焦在精确确定的点上,并发射(可调节的)单波长(单色)光束,并在国防工业平台中作为测距系统发挥作用,以提高动能武器或用于中和敌方光学设备的眩目器的能力和效能;现在它正慢慢地被主要武器本身取代,而不是间接地取代。因此,最近的技术进步使激光成为可再生能源应用的主要候选者。可再生能源技术正在迅速发展,目前已开始应用于军事用途。可再生能源系统支持在军事领域发展的国家的国家安全优先事项;例如,对于美国陆军来说,五角大楼正在探索提高可再生能源能力的方法,从而在所有平台(陆地、空中、海上和太空)上取得军事优势。
加拿大纽芬兰海岸。对所谓的费森登振荡器的研究一直持续到 1931 年,在此期间,频率从 540 Hz 增加到 1,000 Hz(Lasky,1977 年;Hackman,1984 年;Bjørnø,2003 年;Katz,2005 年)。第一次世界大战中,潜艇成为较弱海军强国的首选武器——用今天的话来说,这是一种“不对称威胁”——刺激了对水下潜艇的探测需求,而这些潜艇本来是隐形的(Cote,2000 年)。潜艇的隐蔽性和海洋的不透明性深刻改变了 20 世纪剩余时间的海战(Keegan,1990 年;Cote,2000 年)。由于声音是唯一能在水中传播可观距离的传输能量,因此必须利用声学回声测距来应对这一威胁。第一次世界大战后出现的最重要的回声测距系统是超声波 ASDIC,这是英国和法国海军合作研制的。ASDIC 是盟军潜艇探测调查委员会的缩写,该委员会在第一次世界大战期间成立,以开展潜艇探测研究。意大利也进行了类似的研究,美国的研究范围更为广泛。1918 年,法国物理学家 Paul Langevin 使用一种设计为以 38 kHz 机械共振的发射器演示了第一个 ASDIC 系统,并用它来估计目标距离和方位(Lasky,1977 年;Urick,1983 年;Burdic,1984 年;Hackman,1984 年;Bjørnø,2003 年;Proc,2005 年)。第一个 ASDIC 舰载系统于 1919 年安装,该系统有一个覆盖式圆顶,使系统可以在船舶移动时运行。工作频率从 20 到 50 kHz 不等。在 20 世纪 20 年代和 30 年代初,ASDIC 被开发用于驱逐舰的反潜战 (ASW)。两次世界大战之间的时期也是水下声学基础研究的时期。这一时期的一个关键发现是,水下较高频率的声音在穿过海水时,其振幅比较低频率的声音衰减得更大。基于这一观察,新型驱逐舰 ASDIC(119 型)的频率范围从