1986 年 8 月发射的 HI 运载火箭的第二级配备了日本第一台液氧液氢发动机 LE-5。该发动机采用的涡轮泵由 IHI 制造。随后的 24 年里,HI 运载火箭被 H-II、H-IIA 和 H-IIB 取代,发动机则被 LE-5A、LE-5B、LE-7 和 LE-7A 取代。IHI 一直与日本宇宙航空研究开发机构 (JAXA) 签订合同,负责所有涡轮泵的设计和制造。JAXA 和制造商目前正联合研究 LE-X 发动机 (1) 的开发,因为他们认识到需要开发能够提供未来可重复使用和载人运载火箭的功能和性能的助推发动机,并提供更高的可靠性以确保国际竞争力。图 1 显示了 LE-X 发动机的外部图。 LE-X 发动机使用液氧和液氢作为推进剂,显著提高了由简单而强大的发动机循环(称为膨胀机排气循环)提供的冲量。(2)图 2 显示了 LE-X 发动机循环。由于在膨胀机排气循环中不使用燃烧气体来驱动发动机的涡轮机,因此发动机输出仅逐渐变化,这意味着发生灾难的可能性极低。鉴于此,膨胀机排气循环被认为天生就适合用于未来的载人运输系统。本文介绍了 LE-X 发动机的基本规格以及 IHI 设计的涡轮泵的技术特点。
• 在考虑将 LOX/LNG 作为飞行推进剂组合时,一种常见的设计选择是使用单轴涡轮泵。这种配置包括放置在共用轴上的 LOX 和 LNG 泵,由单个涡轮驱动。通过采用这种布置,涡轮泵组可以做得更小更轻。但是,这也需要在两个泵的设计上做出妥协,因为它们需要以相同的转速运行。对于 LUMEN 演示器,计划使用两个独立的涡轮泵组,以便进行单独优化。这种方法增强了 LUMEN 演示器的操作灵活性。决定将两个涡轮泵组并联排列。这种布置使得能够开发具有相同但相对较高的压力比的高度相似的涡轮机。这不仅降低了开发成本,而且简化了对每个涡轮泵可用功率的控制。
摘要:现代可重复使用发射器的发展,例如采用 LOX/LCH4 Prometheus 发动机的 Themis 项目、采用 LOX/LH2 RSR2 发动机的可重复使用 VTVL 发射器第一级演示器的 CALLISTO 以及采用 Merlin 1D 发动机的 SpaceX 猎鹰 9 号,都凸显了对先进控制算法的需求,以确保发动机的可靠运行。这些发动机的多次重启能力对节流阀提出了额外的要求,需要扩展控制器有效性域,以便在各种操作状态下安全地实现低推力水平。这种能力也增加了部件故障的风险,尤其是当发动机参数随着任务概况而变化时。为了解决这个问题,我们的研究使用多物理系统级建模和仿真,特别关注涡轮泵部件,评估了可重复使用火箭发动机 (RRE) 及其子部件在不同故障模式下的动态可靠性。使用 EcosimPro-ESPSS 软件(版本 6.4.34)进行的瞬态条件建模和性能分析表明,涡轮泵组件在标称条件下保持高可靠性,涡轮叶片即使在变化的热负荷和机械负荷下也表现出显著的疲劳寿命。此外,提出的预测模型估计了关键部件的剩余使用寿命,为提高可重复使用火箭发动机中涡轮泵的寿命和可靠性提供了宝贵的见解。本研究采用确定性、热相关结构模拟,关键控制目标包括燃烧室压力和混合比的最终状态跟踪以及操作约束的验证,以 LUMEN 演示发动机和 LE-5B-2 发动机为例。
免责声明 本信息由美国政府机构赞助,作为工作记录而编写。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
安捷伦真空产品部(原瓦里安真空)一直处于真空技术的前沿,从发明使超高真空成为可能的离子泵开始,通过扩散泵和泄漏检测技术的重大发展以及涡轮分子和干式涡旋泵的创新,直到最新的革命性 TwisTorr FS 涡轮泵和 IDP-15 干式涡旋泵,设定了行业标准。
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ... . ... . ... 34 霍尔委员会. ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... 35 JPL 研究. ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... 37 对导弹和卫星的态度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 北美航空研究 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 卫星提案的淡出 41 航空喷气发动机和马丁设计研究 . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 . . . . . . . . . . . . . . . . . . Aerojet 的第二轮系列实验。1946-1947 44 . . . . . . . . . . . . . . . . . . 从军事重点转向科学重点 46 坎莱特报告 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1947- 1949 . . . . . . . . . . . . . . . . . . . . . 48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 液氢供应 48 . . . . . . . . . . . . . . . . . . . . . . . . . . 涡轮泵发展,1947- 1949 年 50 . . . . . . . . . . . ...
对小型卫星发射机会的需求逐年增加,尤其是对低成本和灵活访问的需求。由于任务、要求和限制各异,许多小型卫星需要专门的发射才能按计划到达预定轨道。尽管与前几年相比,拼车和低成本的专用发射等选择更为常见,但对小型卫星发射服务的需求仍然很高。这一趋势在日本和其他亚洲国家也很明显,因为目前,从当地发射的机会很少。为了解决这一短缺问题,总部位于日本北海道的星际技术公司正在开发两级轨道级运载火箭 ZERO。ZERO 的开发侧重于通过大规模生产、模块化和标准化组件以及内部设计运载火箭系统等方法来降低发射成本。发动机、涡轮泵、推进剂箱、整流罩结构、航空电子设备和地面基础设施等关键部件的大部分工程都是内部完成的。最近的开发更新包括液态生物甲烷发动机燃烧室的水平静态热火试验、涡轮泵的冷流试验、推进剂箱的增压试验、整流罩分离试验和推力矢量控制系统试验,均为缩比原型。本文将介绍星际技术公司如何开发 ZERO 以满足小型卫星的需求并降低进入太空的障碍。
我们很荣幸能与印度空间研究组织合作三十多年,为其各种任务提供各种关键任务组件。具体来说,我们制造液体推进发动机、低温发动机(涡轮泵、增压泵、气体发生器和此类发动机的喷射头)和电动气动模块,用于航天运载火箭。作为 Mangalyaan 任务的一部分,用于发射火星轨道飞行器任务航天器的 PSLV-C25 发动机由 MTAR 提供给印度空间研究组织。此外,最近为地球观测卫星 EOS-01 注入燃料的 PSLV-C49 发动机也是由我们提供给印度空间研究组织的。我们公司也是 Chandrayaan II 任务的 GSLV Mark III 发动机不可或缺的一部分。
摘要 本文将介绍韩国航空宇宙研究院经济实惠且环保的太空运输计划所采用的增材制造液体火箭发动机部件,并介绍推力室和其他部件的当前发展状况。已采用增材制造技术制造了多个推力室部件,即激光粉末床熔合 (L-PBF) 和粉末定向能量沉积 (p-DED),L-PBF 的材料为纯铜、Inconel718 和 CuCrZr,p-DED 的材料为铝青铜和 Inconel 625。并对制造的推力室进行了点火试验。用于 30 kN 推力液体火箭发动机的涡轮泵也正在设计和计划通过增材制造进行制造。此外,还评估和验证了增材制造对发动机喷嘴延伸、高压容器、热交换器和推力框架的可行性和适用性。
本书提供了足够的细节,让负责液体推进剂火箭各个方面的人员能够熟悉和全面地学习,包括发动机系统设计、发动机开发和飞行器应用。它应使火箭工程师能够独立地进行完整或部分发动机系统的初步详细设计,并了解和判断组成完整发动机系统的各个子系统中的活动、问题、限制和“生活事实”。它还试图教育那些最终对专门子系统和组件设计(推力室、涡轮泵、控制阀等)感兴趣的人,让他们了解自己的子系统以及邻近的子系统和完整的发动机系统。这应该使学生能够准备切合实际的分析计算和设计布局,并为子系统生产发布的最终专门设计提供长远的领先优势。