为了减少二氧化碳排放,必须考虑飞机推进系统的颠覆性概念。正如过去几年的研究,混合分布式电力推进系统是一个很有前途的选择。在这项工作中,研究了使用这项技术的新概念飞机的可行性。使用了两种不同的能源:燃料发动机和电池。选择后者是因为其在操作过程中具有灵活性,并且在未来几年内有望得到改善。本研究考虑的技术前景是 2035 年:因此对电气元件、机身和推进系统提出了一些关键假设。</div>由于这些数据存在不确定性,因此进行了敏感性分析,以评估技术变化的影响。为了评估所提出概念的优势,我们根据当今技术(机身、推进、空气动力学)的发展,将其与传统飞机(EIS 2035)进行了比较。
第 4 章 姿态控制 ..................................................................................................................................................................................39 4.1 姿态误差....................................................................................................................................................................................................41 4.1.1 四元数姿态误差....................................................................................................................................................................................41 4.1.2 解算倾斜扭转....................................................................................................................................................41 .................................................................................................................................................................................43 4.1.3 解析欧拉角....................................................................................................................................................................................49 4.1.4 姿态误差对比....................................................................................................................................................................................................61 4.2 姿态控制....................................................................................................................................................................................................................................61 62 4.2.1 PID . ... . ...
摘要 本文主要研究涵道风扇垂直起降 (VTOL) 无人机 (UAV) 的过渡控制。为了实现从悬停到高速飞行的稳定过渡,提出了一种基于神经网络的控制器来学习系统动态并补偿飞机动态和所需动态性能之间的跟踪误差。首先,我们推导了飞机全包络动力学的非线性系统模型。然后,我们提出了一种基于神经网络的新型控制方案并将其应用于欠驱动飞机系统。所提出的控制器的主要特征包括投影算子、状态预测器和动态形成的自适应输入。证明并保证在整个神经网络学习过程中,状态预测器和神经网络权重的跟踪误差都有上限。高度自适应的输入形成动态结构,有助于实现所提出的控制器可靠的快速收敛性能,尤其是在高频扰动条件下。从而使飞行器的闭环系统能够以期望的动态性能跟踪一定的轨迹,仿真和实飞试验均取得了满意的结果,完成了设计的飞行路线。
摘要 — 过去几十年空中交通量的增加及其预测对实现碳中和增长目标构成了关键挑战。为了实现这一社会目标,需要采用具有低环境影响的新技术的颠覆性航空运输飞机概念。这种未来的飞行器依赖于系统、学科和组件之间的各种相互作用。因此,本博士研究的重点是开发一种方法,该方法致力于使用创新推进概念探索和评估非常规配置的性能。要考虑的用例是混合翼身与分布式电力推进的概念级优化,这是一个很有前途的概念,结合了高气动性能和电力推进的优势。
阿姆斯特朗开发的模块化测试台可帮助研究人员对高达 100 kW 的电力推进系统的效率和性能进行广泛的测量。Airvolt 测试台可帮助工程师了解子系统之间的相互作用以及不同电池、电机、控制器和螺旋桨的效率。该测试台为确定这项新兴技术的有效测试技术提供了机会。其大量传感器可收集有关扭矩、推力、电机转速、振动/加速度、电压和电流、温度等的大量数据。这项技术使航空业能够测试各种电力推进系统,以了解效率并确定所需的设计改进。迄今为止的工作:Airvolt 的第一个应用是从 Joby JM-1 电机收集数据,以构建可用于混合电动硬件在环仿真测试台的模型。模拟需要准确的模型,以反映真实的硬件配置并为研究人员提供评估工具。展望:在不久的将来,Airvolt 的另一个应用是进行多个涵道风扇测试,以支持涡轮电动分布式推进研究。
阿姆斯特朗开发的模块化测试台帮助研究人员对高达 100 kW 的电力推进系统的效率和性能进行广泛的测量。Airvolt 测试台帮助工程师了解子系统交互以及不同电池、电机、控制器和螺旋桨的效率。该测试台为确定这项新兴技术的有效测试技术提供了机会。其大型传感器套件收集有关扭矩、推力、电机速度、振动/加速度、电压和电流、温度等的大量数据。这项技术使航空业能够测试各种电力推进系统,以了解效率并确定所需的设计改进。迄今为止的工作:Airvolt 的第一个应用是从 Joby JM-1 电机收集数据,以构建可用于混合电动硬件在环仿真测试台的模型。模拟中需要精确的模型,以反映真实的硬件配置并为研究人员提供评估工具。展望未来:在不久的将来,Airvolt 的另一个应用是执行多个涵道风扇测试,以支持涡轮电动分布式推进研究。
Marc Lesko,Whisper Aero 的 CNC 机械师。图片来源:Carlos Jones/ORNL,美国能源部 2024 年 1 月,这家成立 3 年的初创公司的员工搬进了新总部,将布满灰尘的房间翻新成 21 世纪的航空航天技术设施,其中设有研发原型、测试、制造和运输区域。在曾经矗立着大型印刷机的旧印刷车间,一条 140 英尺长的风洞的脱节部分现在等待重新组装。一家明尼苏达州的自行车公司将这座风洞捐赠给了田纳西理工大学,该大学现在拥有这栋建筑,并将其改造成一个先进的移动业务孵化器,将 130,000 平方英尺的空间中的 40,000 平方英尺租给了 Whisper Aero。这家初创公司的推进创新是一种先进的电动涵道风扇 (EDF),旨在取代大多数飞机上使用的传统化石燃料燃烧发动机。与当今最高效的喷气发动机相比,目前的 EDF 可在 200 至 400 节的速度下将推进效率提高至少 5% 至 10%。Whisper Aero 声称,其专利设计提供了超越当前最先进 EDF 的关键突破,即叶片数量非常多的风扇,其叶片通过频率被推入人类听觉无法听到的超声波范围内。根据该公司的测试,其 EDF 至少安静 100 倍,并且效率提高了 20%
为了减少二氧化碳排放,必须考虑一种颠覆性的飞机推进概念。如过去几年所研究的那样,混合分布式电力推进是一种很有前途的选择。在这项工作中,我们研究了使用这项技术的新概念飞机的可行性。我们使用了两种不同的能源:燃料发动机和电池。之所以选择后者,是因为它们在操作过程中具有灵活性,并且在未来几年内有望得到改善。本研究考虑的技术前景是 2035 年:因此我们对电气元件、机身和推进系统做出了一些关键假设。由于这些数据存在不确定性,因此我们进行了敏感性分析,以评估技术变化的影响。为了评估所提出概念的优势,我们将其与基于当今技术(机身、推进系统、空气动力学)发展的传统飞机(EIS 2035)进行了比较。