在不进行侵入性近场操作的情况下从远场获取场景的亚波长信息是波工程学中的一个基本挑战。然而,众所周知,波在复杂介质中的停留时间决定了波对扰动的敏感度。现代编码孔径成像仪利用复杂介质提供的自由度 (dof) 作为天然多路复用器,但并未认识到并利用将感兴趣的物体放置在复杂介质外部或内部之间的根本区别。在这里,我们表明,只需用混响被动混沌腔将亚波长物体封闭在其远场中,就可以将定位亚波长物体的精度提高几个数量级。我们认为深度学习是一种合适的抗噪工具,可以提取编码在多路复用测量中的亚波长定位信息,实现远超训练数据中可用的分辨率。我们在微波领域展示了我们的发现:利用简单可编程超表面的配置自由度,我们使用仅强度的单频单像素测量,在混沌腔内沿弯曲轨迹定位亚波长物体,分辨率为 λ = 76。我们的研究结果可能在光声成像以及基于回响弹性波、声音或微波的人机交互方面具有重要应用。
摘要 使用光度测定法进行混响映射的精确方法受到高度追捧,因为它们本质上比光谱技术耗费的资源更少。然而,在红移高于 z ≈ 0.04 的情况下,光度混响映射对估计黑洞质量的有效性研究很少。此外,光度测定方法通常假设阻尼随机游走 (DRW) 模型,这可能并不普遍适用。我们使用 JAVELIN 光度 DRW 模型对 z = 0.351 处的 QSO SDSS-J144645.44 + 625304.0 进行光度混响映射,并估计 H β 滞后为 65 + 6 − 1 d,黑洞质量为 10 8 。22 + 0 。13 − 0 .15 M ⊙ .使用数千个模拟 CARMA 过程光变曲线进行的光度混响映射可靠性分析表明,考虑到我们目标的观测信噪比 > 20 和平均节奏为 14 d(即使不适用 DRW),我们可以将输入滞后恢复到平均 6% 以内。此外,我们使用我们的模拟光变曲线套件从我们的 QSO 的后验概率分布中解卷积混叠和伪影,将滞后的信噪比提高了 ∼ 2.2 倍。我们以每个物体四分之一的观测时间超越了斯隆数字巡天混响测绘项目 (SDSS-RM) 活动的信噪比,从而使信噪比效率比 SDSS-RM 提高了约 200%。
几何声学(GA)建模技术假设表面相对于感兴趣的波长较大。对于给定场景,从业者通常会创建一个具有大而平坦表面的 3D 模型,以满足很宽频率范围内的假设。这种几何近似会导致模拟声场的空间分布出现误差,因为会影响反射和散射行为的几何细节被忽略了。为了补偿近似值,建模者通常会估算表面的散射系数,以随机地解释反射方向性中实际的、与波长相关的变化。一种更具确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示