相对熵或能量技术已广泛用于时间相关偏微分方程的存在性、稳定性和离散化误差分析;我们参考[17]对抛物线发展问题相应结果的最新总结。在本文中,我们感兴趣的是双曲问题,其中相对熵参数的使用可以追溯到DiPerna [7]和Dafermos [5]的开创性著作;另请参阅[6]对该领域的介绍。通常涉及的方面有:收敛到稳定态,解对初始数据和参数的稳定依赖性,以及渐近极限。后者的例子包括欧拉和纳维-斯托克斯方程的低马赫极限,例如在[10]中对其进行了研究。Huang等人在一系列论文[11]中研究了阻尼欧拉方程解到Barenblatt解的长时间收敛性。
2015–2017 博士研究。{ 开发和并行实施用于解决玻尔兹曼方程的保守投影离散速度法 { 稀薄气体流动的数值和渐近分析,包括受大温度变化驱动的流动 2009–2014 博士研究,莫斯科物理技术学院,多尔戈普鲁德内。{ 设计和开发高性能计算的问题解决环境 { 开发动力学和流体动力学型方程的数值方法和算法 { 一些经典分子气体动力学问题的计算机模拟
▶更快/较慢的算法的简单示例。▶我们如何衡量算法的“好”是多么的“好”?通过渐近分析方法。▶排序算法:Insertsort,Mergesort,QuickSort,。。。▶基本数据结构:实现列表,堆栈,队列,集合,字典的方式。。。▶图上的算法:深度优先和广度优先搜索,拓扑排序,最短路径。▶动态编程:避免重复工作的一种方法。应用程序,例如图像的接缝雕刻。▶语言处理算法/数据结构(例如Java或Python源代码)。语法,语法,解析。▶算法和计算的限制是什么?浏览复杂性理论(棘手的问题,P与NP)和可计算理论(无法解决的问题,图灵机,停止问题)。
在本文中,我们通过长时间的时间间隔收集的观测值分析回归。对于形式的渐近分析,我们假设样品是从连续的时间随机过程中获得的,并让采样间隔δ缩小至零,样品跨度t增加到无穷大。在此设置中,我们表明,只要δ→0相对于t→∞,标准的WALD统计量向无穷大和回归偏差就会变得虚假。这种现象确实是本文中考虑的回归类型在实践中经常观察到的现象。相比之下,我们的渐近理论预测,如果我们使用适当的长期差异估计的WALD测试的强大版本,则伪造性消失。使用长期对短期利率的长期回归我们的经验说明,这得到了强烈和明确的支持。
黑板:所有与课程相关的作业和材料都将在黑板上提供。公告将发布在黑板上。学生必须有一个工作的CUNY门户帐户才能接收与课程相关的信息描述:本课程是算法设计和分析的介绍性本科课程。本课程的目标是引入基本基本算法设计技术,从理论和实用的角度来看,这些技术都很有趣。我们将介绍基本的算法设计技术,例如划分和争议,动态编程和贪婪的技术。我们将介绍算法正确性的证明,以及通过复发方程解决方案解决算法时间界限的渐近分析。一些特定算法主题包括:确定性和随机排序和搜索算法,深度和广度的第一个搜索图算法,用于查找路径和
摘要: 我们考虑了具有固定入射方向的远场模式的裂纹散射逆问题。首先,我们证明了声软裂纹可以由具有固定入射方向的多频远场模式唯一地确定。该证明基于散射场的低频渐近分析。唯一性结果的一个重要特征是背景甚至可以是未知的非均匀介质。然后提出了一种改进的牛顿法来数值重建裂纹的形状和位置。与经典牛顿法相比,改进的牛顿法放松了对良好初始猜测的依赖,并且可以应用于多个裂纹。二维数值算例证明了改进的牛顿法的可行性和有效性。特别是,如果我们合理地使用两个频率或两个入射方向的测量值,重建的质量可以大大提高。 论文链接: http://dx.doi.org/10.1088/1361-6420/ad904d
传统的多臂老虎机 (MAB) 算法是为平稳环境设计的,其中与臂相关的奖励分布不会随时间而变化。然而,在许多应用中,环境被更准确地建模为非平稳的。在这项工作中,研究了分段平稳 MAB (PS-MAB) 环境,其中与一部分臂相关的奖励分布在某些变化点发生变化,而在变化点之间保持平稳。我们的重点是 PS-MAB 的渐近分析,之前已经为其提出了基于变化检测 (CD) 的实用算法。我们的目标是模块化此类基于 CD 的老虎机 (CDB) 程序的设计和分析。为此,我们确定了模块化所需的平稳老虎机算法和 CDB 程序中变化检测器的要求。我们假设奖励是亚高斯的。在此假设和变化点分离的条件下,我们表明 CDB 程序的分析确实可以模块化,因此可以以统一的方式获得各种变化检测器和强盗算法组合的遗憾界限。通过这种分析,我们开发了新的模块化 CDB 程序,这些程序是顺序最优的。我们在模拟中将我们的模块化 CDB 程序的性能与其他各种方法进行了比较。
传统的多臂老虎机 (MAB) 算法是为平稳环境设计的,其中与臂相关的奖励分布不会随时间而变化。然而,在许多应用中,环境被更准确地建模为非平稳的。在这项工作中,研究了分段平稳 MAB (PS-MAB) 环境,其中与一部分臂相关的奖励分布在某些变化点发生变化,而在变化点之间保持平稳。我们的重点是 PS-MAB 的渐近分析,之前已经为其提出了基于变化检测 (CD) 的实用算法。我们的目标是模块化此类基于 CD 的老虎机 (CDB) 程序的设计和分析。为此,我们确定了模块化所需的平稳老虎机算法和 CDB 程序中变化检测器的要求。我们假设奖励是亚高斯的。在此假设和变化点分离的条件下,我们表明 CDB 程序的分析确实可以模块化,因此可以以统一的方式获得各种变化检测器和强盗算法组合的遗憾界限。通过这种分析,我们开发了新的模块化 CDB 程序,这些程序是顺序最优的。我们在模拟中将我们的模块化 CDB 程序的性能与其他各种方法进行了比较。